[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Majorana zero modes in superconductor–semiconductor heterostructures

Abstract

Realizing topological superconductivity and Majorana zero modes in the laboratory is a major goal in condensed-matter physics. In this Review, we survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor–superconductor heterostructures. We examine materials science progress in growing InAs and InSb semiconductor nanowires and characterizing these systems. We then discuss the observation of robust signatures of Majorana zero modes in recent experiments, paying particular attention to zero-bias tunnelling conduction measurements and Coulomb blockade experiments. We also outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energy spectrum and topological phase diagram of a semiconductor nanowire proximity-coupled to a superconductor.
Fig. 2: Growth of bottom-up nanowires.
Fig. 3: High-symmetry epitaxial Al/InAs interfaces.
Fig. 4: Characterization of superconductor–semiconductor heterostructures.
Fig. 5: Signatures of Majorana zero modes.
Fig. 6: Tunnelling conductance in InSb/Al hybrid structures.
Fig. 7: Coulomb blockade experiment with proximitized nanowires.
Fig. 8: Proposed experiments to probe key properties of topological superconductors for quantum computing applications.

Similar content being viewed by others

References

  1. Wilczek, F. Majorana returns. Nat. Phys. 5, 614–618 (2009).

    Article  CAS  Google Scholar 

  2. Stern, A. Non-Abelian states of matter. Nature 464, 187–193 (2010).

    Article  CAS  Google Scholar 

  3. Brouwer, P. W. Enter the Majorana Fermion. Science 336, 989–990 (2012).

    Article  CAS  Google Scholar 

  4. Lee, P. A. Seeking out Majorana under the microscope. Science 346, 545–546 (2014).

    Article  CAS  Google Scholar 

  5. Majorana, E. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cim. 14, 171 (1937).

    Article  CAS  Google Scholar 

  6. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  CAS  Google Scholar 

  7. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  CAS  Google Scholar 

  8. Moore, G. & Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article  Google Scholar 

  9. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum hall effect. Phys. Rev. B 61, 10267 (2000).

    Article  CAS  Google Scholar 

  10. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  11. Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    Article  CAS  Google Scholar 

  12. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  Google Scholar 

  13. Leijnse, M. & Flensberg, K. Introduction to topological superconductivity and Majorana fermions. Semicond. Sci. Technol. 27, 124003 (2012).

    Article  CAS  Google Scholar 

  14. Stanescu, T. D. & Tewari, S. Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment. J. Phys. Condens. Matter 25, 233201 (2013).

    Article  CAS  Google Scholar 

  15. Elliott, S. R. & Franz, M. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137–163 (2015).

    Article  CAS  Google Scholar 

  16. Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. Quantum Inf. 1, 15001 (2015).

    Article  Google Scholar 

  17. Sato, M. & Fujimoto, S. Majorana fermions and topology in superconductors. J. Phys. Soc. Jpn 85, 072001 (2016).

    Article  Google Scholar 

  18. Aguado, R. Majorana quasiparticles in condensed matter. Riv. Nuovo Cimento. 40, 523–593 (2017).

    Google Scholar 

  19. Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  CAS  Google Scholar 

  20. Fu, L. & Kane, C. L. Josephson current and noise at a superconductor/quantum-spin-hall-insulator/superconductor junction. Phys. Rev. B 79, 161408(R) (2009).

    Article  CAS  Google Scholar 

  21. Cook, A. & Franz, M. Majorana fermions in a topological-insulator nanowire proximity-coupled to an s-wave superconductor. Phys. Rev. B 84, 201105 (2011).

    Article  CAS  Google Scholar 

  22. Sun, H.-H. et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).

    Article  CAS  Google Scholar 

  23. Sau, J. D., Lutchyn, R. M., Tewari, S. & Sarma, S. D. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).

    Article  CAS  Google Scholar 

  24. Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).

    Article  CAS  Google Scholar 

  25. Lutchyn, R. M., Sau, J. D. & Sarma, S. D. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  CAS  Google Scholar 

  26. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  CAS  Google Scholar 

  27. Chung, S. B., Zhang, H.-J., Qi, X.-L. & Zhang, S.-C. Topological superconducting phase and Majorana fermions in half-metal/superconductor heterostructures. Phys. Rev. B 84, 060510 (2011).

    Article  CAS  Google Scholar 

  28. Duckheim, M. & Brouwer, P. W. Andreev reflection from noncentrosymmetric superconductors and Majorana bound-state generation in half-metallic ferromagnets. Phys. Rev. B 83, 054513 (2011).

    Article  CAS  Google Scholar 

  29. Potter, A. C. & Lee, P. A. Topological superconductivity and Majorana fermions in metallic surface states. Phys. Rev. B 85, 094516 (2012).

    Article  CAS  Google Scholar 

  30. Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling. Phys. Rev. B 84, 195442 (2011).

    Article  CAS  Google Scholar 

  31. Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).

    Article  CAS  Google Scholar 

  32. Klinovaja, J., Stano, P., Yazdani, A. & Loss, D. Topological superconductivity and Majorana fermions in RKKY systems. Phys. Rev. Lett. 111, 186805 (2013).

    Article  CAS  Google Scholar 

  33. Braunecker, B. & Simon, P. Interplay between classical magnetic moments and superconductivity in quantum one-dimensional conductors: toward a self-sustained topological Majorana phase. Phys. Rev. Lett. 111, 147202 (2013).

    Article  CAS  Google Scholar 

  34. Vazifeh, M. M. & Franz, M. Self-organized topological state with Majorana fermions. Phys. Rev. Lett. 111, 206802 (2013).

    Article  CAS  Google Scholar 

  35. Pientka, F., Glazman, L. I. & von Oppen, F. Topological superconducting phase in helical Shiba chains. Phys. Rev. B 88, 155420 (2013).

    Article  CAS  Google Scholar 

  36. Nakosai, S., Tanaka, Y. & Nagaosa, N. Two-dimensional p-wave superconducting states with magnetic moments on a conventional s-wave superconductor. Phys. Rev. B 88, 180503 (2013).

    Article  CAS  Google Scholar 

  37. Kim, Y., Cheng, M., Bauer, B., Lutchyn, R. M. & Sarma, S. D. Helical order in one-dimensional magnetic atom chains and possible emergence of Majorana bound states. Phys. Rev. B 90, 060401 (2014).

    Article  CAS  Google Scholar 

  38. Brydon, P. M. R., Sarma, S. D., Hui, H.-Y. & Sau, J. D. Topological Yu-Shiba-Rusinov chain from spin-orbit coupling. Phys. Rev. B 91, 064505 (2015).

    Article  CAS  Google Scholar 

  39. Li, J. et al. Topological superconductivity induced by ferromagnetic metal chains. Phys. Rev. B 90, 235433 (2014).

    Article  CAS  Google Scholar 

  40. Heimes, A., Kotetes, P. & Schön, G. Majorana fermions from Shiba states in an antiferromagnetic chain on top of a superconductor. Phys. Rev. B 90, 060507 (2014).

    Article  CAS  Google Scholar 

  41. Röntynen, J. & Ojanen, T. Topological superconductivity and high Chern numbers in 2D ferromagnetic Shiba lattices. Phys. Rev. Lett. 114, 236803 (2015).

    Article  Google Scholar 

  42. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  CAS  Google Scholar 

  43. Ruby, M. et al. End states and subgap structure in proximity-coupled chains of magnetic adatoms. Phys. Rev. Lett. 115, 197204 (2015).

    Article  CAS  Google Scholar 

  44. Pawlak, R. et al. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. Quantum Inf. 2, 16035 (2016).

    Article  Google Scholar 

  45. Zhang, J., Kim, Y., Rossi, E. & Lutchyn, R. M. Topological superconductivity in a multichannel Yu-Shiba-Rusinov chain. Phys. Rev. B 93, 024507 (2016).

    Article  CAS  Google Scholar 

  46. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  47. Rokhinson, L. P., Liu, X. & Furdyna, J. K. The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795–799 (2012).

    Article  CAS  Google Scholar 

  48. Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    Article  CAS  Google Scholar 

  49. Churchill, H. O. H. et al. Superconductor-nanowire devices from tunneling to the multichannel regime: zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B 87, 241401 (2013).

    Article  CAS  Google Scholar 

  50. Das, A. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    Article  CAS  Google Scholar 

  51. Finck, A. D. K., Van Harlingen, D. J., Mohseni, P. K., Jung, K. & Li, X. Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. Phys. Rev. Lett. 110, 126406 (2013).

    Article  CAS  Google Scholar 

  52. Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    Article  CAS  Google Scholar 

  53. Gül, Ö. et al. Ballistic Majorana nanowire devices. Nat. Nanotechnol. 13, 192–197 (2018).

    Article  CAS  Google Scholar 

  54. Chen, J. et al. Experimental phase diagram of a one-dimensional topological superconductor. Sci. Adv. 3, e1701476 (2017).

    Article  CAS  Google Scholar 

  55. Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557–1562 (2016).

    Article  CAS  Google Scholar 

  56. Suominen, H. J. et al. Zero-energy modes from coalescing Andreev states in a two-dimensional semiconductor-superconductor hybrid platform. Phys. Rev. Lett. 119, 176805 (2017).

    Article  CAS  Google Scholar 

  57. Nichele, F. et al. Scaling of Majorana zero-bias conductance peaks. Phys. Rev. Lett. 119, 136803 (2017).

    Article  Google Scholar 

  58. Zhang, H. et al. Quantized Majorana conductance. Nature https://doi.org/10.1038/nature26142 (2018).

  59. Zhang, H. Ballistic superconductivity in semiconductor nanowires. Nat. Commun. 8, 16025 (2017).

    Article  CAS  Google Scholar 

  60. Sestoft, J. E. et al. Hybrid epitaxial InAsSb/Al nanowires towards topological applications. Preprint in arXiv, 1711.06864 (2017).

  61. Deng, M. T. et al. Majorana non-locality in hybrid nanowires. Preprint in arXiv, 1712.03536 (2017).

  62. Laroche, D. et al. Observation of the 4π-periodic Josephson effect in InAs nanowires. Preprint in arXiv, 1712.08459 (2017).

  63. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131–136 (2001).

    Article  Google Scholar 

  64. Motrunich, O., Damle, K. & Huse, D. A. Griffiths effects and quantum critical points in dirty superconductors without spin-rotation invariance: one-dimensional examples. Phys. Rev. B 63, 224204 (2001).

    Article  CAS  Google Scholar 

  65. Brouwer, P. W., Duckheim, M., Romito, A. & von Oppen, F. Topological superconducting phases in disordered quantum wires with strong spin-orbit coupling. Phys. Rev. B 84, 144526 (2011).

    Article  CAS  Google Scholar 

  66. Stanescu, T. D., Lutchyn, R. M. & Sarma, S. D. Majorana fermions in semiconductor nanowires. Phys. Rev. B 84, 144522 (2011).

    Article  CAS  Google Scholar 

  67. Akhmerov, A. R., Dahlhaus, J. P., Hassler, F., Wimmer, M. & Beenakker, C. W. J. Quantized conductance at the majorana phase transition in a disordered superconducting wire. Phys. Rev. Lett. 106, 057001 (2011).

    Article  CAS  Google Scholar 

  68. Liu, J., Potter, A. C., Law, K. T. & Lee, P. A. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys. Rev. Lett. 109, 267002 (2012).

    Article  CAS  Google Scholar 

  69. Lobos, A. M., Lutchyn, R. M. & Sarma, S. D. Interplay of disorder and interaction in Majorana quantum wires. Phys. Rev. Lett. 109, 146403 (2012).

    Article  CAS  Google Scholar 

  70. Potter, A. C. & Lee, P. A. Engineering a p + ip superconductor: comparison of topological insulator and Rashba spin-orbit-coupled materials. Phys. Rev. B 83, 184520 (2011).

    Article  CAS  Google Scholar 

  71. Lutchyn, R. M., Stanescu, T. D. & Sarma, S. D. Momentum relaxation in a semiconductor proximity-coupled to a disordered s-wave superconductor: effect of scattering on topological superconductivity. Phys. Rev. B 85, 140513 (2012).

    Article  CAS  Google Scholar 

  72. DeGottardi, W., Sen, D. & Vishveshwara, S. Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials. Phys. Rev. Lett. 110, 146404 (2013).

    Article  CAS  Google Scholar 

  73. Takei, S., Fregoso, B. M., Hui, H.-Y., Lobos, A. M. & Sarma, S. D. Soft superconducting gap in semiconductor Majorana nanowires. Phys. Rev. Lett. 110, 186803 (2013).

    Article  CAS  Google Scholar 

  74. Adagideli, I., Wimmer, M. & Teker, A. Effects of electron scattering on the topological properties of nanowires: Majorana fermions from disorder and superlattices. Phys. Rev. B 89, 144506 (2014).

    Article  CAS  Google Scholar 

  75. Hui, H.-Y., Sau, J. D. & Sarma, S. D. Bulk disorder in the superconductor affects proximity-induced topological superconductivity. Phys. Rev. B. 92, 174512 (2015).

    Article  CAS  Google Scholar 

  76. Cole, W. S., Sau, J. D. & Sarma, S. D. Proximity effect and Majorana bound states in clean semiconductor nanowires coupled to disordered superconductors. Phys. Rev. B. 94, 140505 (2016).

    Article  CAS  Google Scholar 

  77. Hegde, S. S. & Vishveshwara, S. Majorana wave-function oscillations, fermion parity switches and disorder in Kitaev chains. Phys. Rev. B. 94, 115166 (2016).

    Article  Google Scholar 

  78. Liu, D. E., Rossi, E. & Lutchyn, R. M. Impurity-induced states in superconducting heterostructures. Preprint in arXiv, 1711.04056 (2017).

  79. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  80. Murakami, S. Quantum spin hall systems and topological insulators. New J. Phys. 13, 105007 (2011).

    Article  Google Scholar 

  81. Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    Article  CAS  Google Scholar 

  82. Bernevig, B. A. & Hughes, T. L. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

  83. Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    Article  Google Scholar 

  84. Shabani, J. et al. Two-dimensional epitaxial superconductor-semiconductor heterostructures: a platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016).

    Article  CAS  Google Scholar 

  85. Wagner, R. S. & Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

    Article  CAS  Google Scholar 

  86. Caroff, P. et al. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch. Nanotechnology 20, 495606 (2009).

    Article  CAS  Google Scholar 

  87. Lugani, L. et al. Faceting of InAs-InSb heterostructured nanowires. Cryst. Growth Des. 10, 4038–4042 (2010).

    Article  CAS  Google Scholar 

  88. Nilsson, H. A. Temperature dependent properties of InSb and InAs nanowire field-effect transistors. Appl. Phys. Lett. 96, 153505 (2010).

    Article  CAS  Google Scholar 

  89. Vogel, A. T. et al. Fabrication of high-quality InSb nanowire arrays by chemical beam epitaxy. Cryst. Growth Des. 11, 1896–1900 (2011).

    Article  CAS  Google Scholar 

  90. Plissard, S. R. et al. From InSb nanowires to nanocubes: Looking for the sweet spot. Nano Lett. 12, 1794–1798 (2012).

    Article  CAS  Google Scholar 

  91. Plissard, S. R. et al. Formation and electronic properties of InSb nanocrosses. Nat. Nanotechnol. 8, 859–864 (2013).

    Article  CAS  Google Scholar 

  92. Jung-Hyun, K. et al. Crystal structure and transport in merged InAs nanowires MBE grown on (001) InAs. Nano Lett. 13, 5190–5196 (2013).

    Article  CAS  Google Scholar 

  93. Car, D., Wang, J., Verheijen, M. A., Bakkers, E. P. A. M. & Plissard, S. R. Rationally designed single-crystalline nanowire networks. Adv. Mater. 26, 4875–4879 (2014).

    Article  CAS  Google Scholar 

  94. Dalacu, D., Kam, A., Austing, D. G. & Poole, P. J. Droplet dynamics in controlled InAs nanowire interconnections. Nano Lett. 13, 2676–2681 (2013).

    Article  CAS  Google Scholar 

  95. Heedt, S. et al. Electronic properties of complex self-assembled InAs nanowire networks. Adv. Electron. Mater. 2, 1500460 (2016).

    Article  CAS  Google Scholar 

  96. Rieger, T. et al. Crystal phase transformation in self-assembled InAs nanowire junctions on patterned Si substrates. Nano Lett. 16, 1933–1941 (2016).

    Article  CAS  Google Scholar 

  97. Krizek, F. et al. Growth of InAs wurtzite nanocrosses from hexagonal and cubic basis. Nano Lett. 17, 6090–6096 (2017).

    Article  CAS  Google Scholar 

  98. Gazibegovic, S. et al. Epitaxy of advanced nanowire quantum devices. Nature 548, 434–438 (2017).

    Article  CAS  Google Scholar 

  99. Krogstrup, P. et al. Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14, 400–406 (2015).

    Article  CAS  Google Scholar 

  100. Chang, W. et al. Hard gap in epitaxial superconductor-semiconductor nanowires. Nat. Nanotechnol. 10, 232–236 (2015).

    Article  CAS  Google Scholar 

  101. Kang, J.-H. et al. Robust epitaxial Al coating of reclined InAs nanowires. Nano Lett. 17, 7520–7527 (2017).

    Article  CAS  Google Scholar 

  102. Gusken, N. A. et al. MBE growth of Al/InAs and Nb/InAs superconducting hybrid nanowire structures. Nanoscale 9, 16735–16741 (2017).

    Article  Google Scholar 

  103. Kammhuber, J. Conductance quantization at zero magnetic field in InSb nanowires. Nano Lett. 16, 3482–3486 (2016).

    Article  CAS  Google Scholar 

  104. Fadaly, E. M. T. et al. Observation of conductance quantization in InSb nanowire networks. Nano Lett. 17, 6511–6515 (2017).

    Article  CAS  Google Scholar 

  105. Court, N. A., Ferguson, A. J. & Clark, R. G. Energy gap measurement of nanostructured aluminium thin films for single Cooper-pair devices. Semicond. Sci. Technol. 21, 015013 (2008).

    Google Scholar 

  106. Iordanskii, S. V., Lyanda-Geller, Y. B. & Pikus, G. E. Weak localization in quantum wells with spin-orbit interaction. J. Exp. Theor. Phys. 60, 206 (1994).

    Google Scholar 

  107. van Weperen, I. et al. Spin-orbit interaction in InSb nanowires. Phys. Rev. B 91, 201413 (2015).

    Article  CAS  Google Scholar 

  108. Sengupta, K., Žutic, I., Kwon, H.-J., Yakovenko, V. M. & Sarma, S. D. Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors. Phys. Rev. B 63, 144531 (2001).

    Article  CAS  Google Scholar 

  109. Nilsson, J., Akhmerov, A. R. & Beenakker, C. W. J. Splitting of a Cooper pair by a pair of Majorana bound states. Phys. Rev. Lett. 101, 120403 (2008).

    Article  CAS  Google Scholar 

  110. Law, K. T., Lee, P. A. & Ng, T. K. Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009).

    Article  CAS  Google Scholar 

  111. Sau, J. D., Tewari, S., Lutchyn, R. M., Stanescu, T. D. & Sarma, S. D. Non-Abelian quantum order in spin-orbit-coupled semiconductors: search for topological Majorana particles in solid-state systems. Phys. Rev. B 82, 214509 (2010).

    Article  CAS  Google Scholar 

  112. Flensberg, K. Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 82, 180516 (2010).

    Article  CAS  Google Scholar 

  113. Wimmer, M., Akhmerov, A. R., Dahlhaus, J. P. & Beenakker, C. W. J. Quantum point contact as a probe of a topological superconductor. New J. Phys. 13, 053016 (2011).

    Article  CAS  Google Scholar 

  114. Prada, E., San-Jose, P. & Aguado, R. Transport spectroscopy of NS nanowire junctions with Majorana fermions. Phys. Rev. B 86, 180503 (2012).

    Article  CAS  Google Scholar 

  115. Rainis, D., Trifunovic, L., Klinovaja, J. & Loss, D. Towards a realistic transport modeling in a superconducting nanowire with Majorana fermions. Phys. Rev. B 87, 024515 (2013).

    Article  CAS  Google Scholar 

  116. Fidkowski, L., Alicea, J., Lindner, N. H., Lutchyn, R. M. & Fisher, M. P. A. Universal transport signatures of Majorana fermions in superconductor-Luttinger liquid junctions. Phys. Rev. B 85, 245121 (2012).

    Article  CAS  Google Scholar 

  117. Lutchyn, R. M. & Skrabacz, J. H. Transport properties of topological superconductor-Luttinger liquid junctions: a real-time Keldysh approach. Phys. Rev. B 88, 024511 (2013).

    Article  CAS  Google Scholar 

  118. Bolech, C. J. & Demler, E. Observing Majorana bound states in p-wave superconductors using noise measurements in tunneling experiments. Phys. Rev. Lett. 98, 237002 (2007).

    Article  CAS  Google Scholar 

  119. Golub, A. & Horovitz, B. Shot noise in a Majorana fermion chain. Phys. Rev. B 83, 153415 (2011).

    Article  CAS  Google Scholar 

  120. Haim, A., Berg, E., von Oppen, F. & Oreg, Y. Signatures of Majorana zero modes in spin-resolved current correlations. Phys. Rev. Lett. 114, 166406 (2015).

    Article  CAS  Google Scholar 

  121. Haim, A., Berg, E., von Oppen, F. & Oreg, Y. Current correlations in a Majorana beam splitter. Phys. Rev. B 92, 245112 (2015).

    Article  CAS  Google Scholar 

  122. Liu, D. E., Cheng, M. & Lutchyn, R. M. Probing Majorana physics in quantum-dot shot-noise experiments. Phys. Rev. B 91, 081405 (2015).

    Article  CAS  Google Scholar 

  123. Liu, D. E., Levchenko, A. & Lutchyn, R. M. Majorana zero modes choose Euler numbers as revealed by full counting statistics. Phys. Rev. B 92, 205422 (2015).

    Article  CAS  Google Scholar 

  124. Jiang, L. et al. Unconventional Josephson signatures of Majorana bound states. Phys. Rev. Lett. 107, 236401 (2011).

    Article  CAS  Google Scholar 

  125. Pikulin, D. I., Dahlhaus, J. P., Wimmer, M., Schomerus, H. & Beenakker, C. W. J. A zero-voltage conductance peak from weak antilocalization in a Majorana nanowire. New J. Phys. 14, 125011 (2012).

    Article  CAS  Google Scholar 

  126. Houzet, M., Meyer, J. S., Badiane, D. M. & Glazman, L. I. Dynamics of Majorana states in a topological Josephson junction. Phys. Rev. Lett. 111, 046401 (2013).

    Article  CAS  Google Scholar 

  127. San-Jose, P., Cayao, J., Prada, E. & Aguado, R. Multiple Andreev reflection and critical current in topological superconducting nanowire junctions. New J. Phys. 15, 075019 (2013).

    Article  CAS  Google Scholar 

  128. Sau, J. D. & Setiawan, F. Detecting topological superconductivity using low-frequency doubled Shapiro steps. Phys. Rev. B 95, 060501 (2017).

    Article  Google Scholar 

  129. Fu, L. Electron teleportation via Majorana bound states in a mesoscopic superconductor. Phys. Rev. Lett. 104, 056402 (2010).

    Article  CAS  Google Scholar 

  130. Zazunov, A., Yeyati, A. L. & Egger, R. Coulomb blockade of Majorana-fermion-induced transport. Phys. Rev. B 84, 165440 (2011).

    Article  CAS  Google Scholar 

  131. Hutzen, R., Zazunov, A., Braunecker, B., Yeyati, A. L. & Egger, R. Majorana single-charge transistor. Phys. Rev. Lett. 109, 166403 (2012).

    Article  CAS  Google Scholar 

  132. Ulrich, J. & Hassler, F. Majorana-assisted nonlocal electron transport through a floating topological superconductor. Phys. Rev. B 92, 075443 (2015).

    Article  CAS  Google Scholar 

  133. van Heck, B., Lutchyn, R. M. & Glazman, L. I. Conductance of a proximitized nanowire in the Coulomb blockade regime. Phys. Rev. B 93, 235431 (2016).

    Article  CAS  Google Scholar 

  134. Lutchyn, R. M., Flensberg, K. & Glazman, L. I. Quantum charge fluctuations of a proximitized nanowire. Phys. Rev. B 94, 125407 (2016).

    Article  Google Scholar 

  135. Lutchyn, R. M. & Glazman, L. I. Transport through a Majorana island in the strong tunneling regime. Phys. Rev. Lett. 119, 057002 (2017).

    Article  Google Scholar 

  136. Aleiner, I. L., Brouwer, P. W. & Glazman, L. I. Quantum effects in Coulomb blockade. Phys. Rep. 358, 309–440 (2002).

    Article  CAS  Google Scholar 

  137. Béri, B. & Cooper, N. R. Topological Kondo effect with Majorana fermions. Phys. Rev. Lett. 109, 156803 (2012).

    Article  CAS  Google Scholar 

  138. Altland, A. & Egger, R. Multiterminal Coulomb-Majorana junction. Phys. Rev. Lett. 110, 196401 (2013).

    Article  CAS  Google Scholar 

  139. Michaeli, K., Aviad Landau, L., Sela, E. & Fu, L. Electron teleportation and statistical transmutation in multiterminal Majorana islands. Phys. Rev. B 96, 205403 (2017).

    Article  Google Scholar 

  140. Qu, C., Zhang, Y., Mao, L. & Zhang, C. Signature of Majorana fermions in charge transport in semiconductor nanowires. Preprint in arXiv, 1109.4108 (2011).

  141. Liu, C.-X., Sau, J. D., Stanescu, T. D. & Sarma, S. D. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017).

    Article  Google Scholar 

  142. Bagrets, D. & Altland, A. Class D spectral peak in Majorana quantum wires. Phys. Rev. Lett. 109, 227005 (2012).

    Article  CAS  Google Scholar 

  143. Lee, E. J. H., Jiang, X., Aguado, R., Katsaros, G., Lieber, C. M. & De Franceschi, S. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 109, 186802 (2012).

    Article  CAS  Google Scholar 

  144. Lee, E. J. H. et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnol. 9, 79–84 (2014).

    Article  CAS  Google Scholar 

  145. Kells, G., Meidan, D. & Brouwer, P. W. Near-zero-energy end states in topologically trivial spin-orbit coupled superconducting nanowires with a smooth confinement. Phys. Rev. B 86, 100503(R) (2012).

    Article  CAS  Google Scholar 

  146. Vaitiekenas, S., Deng, M. T., Nygård, J., Krogstrup, P. & Marcus, C. M. Effective g-factor in Majorana wires. Preprint in arXiv, 1710.04300 (2017).

  147. Leijnse, M. & Flensberg, K. Scheme to measure Majorana fermion lifetimes using a quantum dot. Phys. Rev. B 84, 140501 (2011).

    Article  CAS  Google Scholar 

  148. Liu, D. E. & Baranger, H. U. Detecting a Majorana-fermion zero mode using a quantum dot. Phys. Rev. B 84, 201308 (2011).

    Article  CAS  Google Scholar 

  149. Lee, M., Lim, J. S. & López, R. Kondo effect in a quantum dot side-coupled to a topological superconductor. Phys. Rev. B 87, 241402 (2013).

    Article  CAS  Google Scholar 

  150. Cheng, M., Becker, M., Bauer, B. & Lutchyn, R. M. Interplay between Kondo and Majorana interactions in quantum dots. Phys. Rev. B 4, 031051 (2014).

    Google Scholar 

  151. Clarke, D. J. Experimentally accessible topological quality factor for wires with zero energy modes. Phys. Rev. B 96, 201109 (2017).

    Article  Google Scholar 

  152. Prada, E., Aguado, R. & San-Jose, P. Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B 96, 085418 (2017).

    Article  Google Scholar 

  153. Higginbotham, A. P. et al. Parity lifetime of bound states in a proximitized semiconductor nanowire. Nat. Phys. 11, 1017–1021 (2015).

    Article  CAS  Google Scholar 

  154. Averin, D. V. & Nazarov, Y. V. Single-electron charging of a superconducting island. Phys. Rev. Lett. 69, 1993–1996 (1992).

    Article  CAS  Google Scholar 

  155. Chiu, C.-K., Sau, J. D. & Sarma, S. D. Conductance of a superconducting Coulomb-blockaded Majorana nanowire. Phys. Rev. B 96, 054504 (2017).

    Article  Google Scholar 

  156. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).

    Article  CAS  Google Scholar 

  157. Hyart, T. et al. Flux-controlled quantum computation with Majorana fermions. Phys. Rev. B 88, 035121 (2013).

    Article  CAS  Google Scholar 

  158. Altland, A., Béri, B., Egger, R. & Tsvelik, A. M. Multichannel Kondo impurity dynamics in a Majorana device. Phys. Rev. Lett. 113, 076401 (2014).

    Article  CAS  Google Scholar 

  159. Landau, L. A. et al. Towards realistic implementations of a Majorana surface code. Phys. Rev. Lett. 116, 050501 (2016).

    Article  CAS  Google Scholar 

  160. Hoffman, S., Schrade, C., Klinovaja, J. & Loss, D. Universal quantum computation with hybrid spin-Majorana qubits. Phys. Rev. B 94, 045316 (2016).

    Article  Google Scholar 

  161. Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016).

    Google Scholar 

  162. Plugge, S. et al. Roadmap to Majorana surface codes. Phys. Rev. B 94, 174514 (2016).

    Article  Google Scholar 

  163. Vijay, S. & Fu, L. Physical implementation of a Majorana fermion surface code for fault-tolerant quantum computation. Phys. Scr. T168, 014002 (2016).

    Article  CAS  Google Scholar 

  164. Plugge, S., Rasmussen, A., Egger, R. & Flensberg, K. Majorana box qubits. New J. Phys. 19, 012001 (2016).

    Article  CAS  Google Scholar 

  165. Karzig, T. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B 95, 235305 (2017).

    Article  Google Scholar 

  166. Albrecht, S. M. et al. Transport signatures of quasiparticle poisoning in a Majorana island. Phys. Rev. Lett. 118, 137701 (2017).

    Article  CAS  Google Scholar 

  167. Antipov, A. E. et al. Effects of gate-induced electric fields on semiconductor Majorana nanowires. Preprint in arXiv, 1801.02616 (2018).

  168. Woods, B. D., Stanescu, T. D. Sarma, S. D. Effective theory approach to the Schrodinger-Poisson problem in semiconductor Majorana devices. Preprint in arXiv, 1801.02630 (2018).

  169. Mikkelsen, A. E. G., Kotetes, P., Krogstrup, P. & Flensberg, K. Hybridization at superconductor-semiconductor interfaces. Preprint in arXiv, 1801.03439 (2018).

  170. Reeg, C., Loss, D. & Klinovaja, J. Metallization of Rashba wire by superconducting layer in the strong-proximity regime. Preprint in arXiv, 1801.06509 (2018).

  171. Bonderson, P. Measurement-only topological quantum computation via tunable interactions. Phys. Rev. B 87, 035113 (2013).

    Article  CAS  Google Scholar 

  172. Barkeshli, M. & Sau, J. D. Physical architecture for a universal topological quantum computer based on a network of Majorana nanowires. Preprint in arXiv, 1509.07135 (2015).

  173. Bonderson, P., Freedman, M. & Nayak, C. Measurement-only topological quantum computation. Phys. Rev. Lett. 101, 010501 (2008).

    Article  CAS  Google Scholar 

  174. Bonderson, P., Freedman, M. & Nayak, C. Measurement-only topological quantum computation via anyonic interferometry. Ann. Phys. 324, 787–826 (2009).

    Article  CAS  Google Scholar 

  175. Litinski, D., Kesselring, M. S., Eisert, J. & von Oppen, F. Combining topological hardware and topological software: color-code quantum computing with topological superconductor networks. Phys. Rev. X 7, 031048 (2017).

    Google Scholar 

  176. Flensberg, K. Non-Abelian operations on Majorana fermions via single-charge control. Phys. Rev. Lett. 106, 090503 (2011).

    Article  CAS  Google Scholar 

  177. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    Article  CAS  Google Scholar 

  178. Bravyi, S. Universal quantum computation with the ν = 5/2 fractional quantum Hall state. Phys. Rev. A 73, 042313 (2006).

    Article  CAS  Google Scholar 

  179. Sau, J. D., Tewari, S. & Sarma, S. D. Universal quantum computation in a semiconductor quantum wire network. Phys. Rev. A 82, 052322 (2010).

    Article  CAS  Google Scholar 

  180. Jiang, L., Kane, C. L. & Preskill, J. Interface between topological and superconducting qubits. Phys. Rev. Lett. 106, 130504 (2011).

    Article  CAS  Google Scholar 

  181. Bonderson, P. & Lutchyn, R. M. Topological quantum buses: coherent quantum information transfer between topological and conventional qubits. Phys. Rev. Lett. 106, 130505 (2011).

    Article  CAS  Google Scholar 

  182. Karzig, T., Oreg, Y. I., Refael, G. & Freedman, M. H. Universal geometric path to a robust Majorana magic gate. Phys. Rev. X 6, 031019 (2016).

    Google Scholar 

  183. Clarke, D. J., Sau, J. D. & Sarma, S. D. A practical phase gate for producing Bell violations in Majorana wires. Phys. Rev. X 6, 021005 (2016).

    Google Scholar 

  184. Knapp, C., Karzig, T., Lutchyn, R. M. & Nayak, C. Dephasing of Majorana-based qubits. Phys. Rev. B 97, 125404 (2018).

    Article  Google Scholar 

  185. Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state. Phys. Rev. Lett. 87, 037004 (2001).

    Article  CAS  Google Scholar 

  186. Levinshtein, M., Rumyantsev, S. & Shur, R. Handbook Series on Semiconductor Parameters (World Scientific, 2007).

  187. Winkler, R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, Heidelberg, 2003).

    Book  Google Scholar 

  188. Cochran, J. F. & Mapother, D. E. Superconducting transition in aluminum. Phys. Rev. 111, 132–142 (1958).

    Article  CAS  Google Scholar 

  189. Kjaergaard, M. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure. Nat. Commun. 7, 12841 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from The Netherlands Organization for Scientific Research, Foundation for Fundamental Research on Matter, European Research Council (ERC), Danish National Research Foundation, The European Research Council (ERC) under the grant agreement No. 716655 (HEMs-DAM), Deutsche Forschungsgemeinschaft (CRC 183), the Israel Science Foundation (ISF), the Binational Science Foundation (BSF) and the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013)/ERC grant agreement No. 340210 and Microsoft Corporation is acknowledged. The authors thank B. van Heck, T. Karzig, M. Kjærgaard, C. Knapp, F. Nichele, E. Rossi and S. Vishveshwara for their help with the manuscript preparation. The authors acknowledge all their collaborators on the subject of topological superconductivity.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content, researched data, wrote the article and assisted in editing the manuscript before submission.

Corresponding author

Correspondence to R. M. Lutchyn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutchyn, R., Bakkers, E.P.A.M., Kouwenhoven, L.P. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat Rev Mater 3, 52–68 (2018). https://doi.org/10.1038/s41578-018-0003-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0003-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing