Abstract
Molybdenum disulphide nanostructures are of interest for a wide variety of nanotechnological applications ranging from the potential use of inorganic nanotubes in nanoelectronics to the active use of nanoparticles in heterogeneous catalysis. Here, we use atom-resolved scanning tunnelling microscopy to systematically map and classify the atomic-scale structure of triangular MoS2 nanocrystals as a function of size. Instead of a smooth variation as expected from the bulk structure of MoS2, we observe a very strong size dependence for the cluster morphology and electronic structure driven by the tendency to optimize the sulphur excess present at the cluster edges. By analysing of the atomic-scale structure of clusters, we identify the origin of the structural transitions occurring at unique cluster sizes. The novel findings suggest that good size control during the synthesis of MoS2 nanostructures may be used for the production of chemically or optically active MoS2 nanomaterials with superior performance.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Wang, Y. & Herron, N. Nanometer-sized semiconductor clusters — Materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525–532 (1991).
Goldstein, A. N., Echer, C. M. & Alivisatos, A. P. Melting in semiconductor nanocrystals. Science 256, 1425–1427 (1992).
Knickelbein, M. B. Electronic shell structure in the ionization-potentials of copper clusters. Chem. Phys. Lett. 192, 129–134 (1992).
Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997).
Wallis, T. M., Nilius, N. & Ho, W. Electronic density oscillations in gold atomic chains assembled atom by atom. Phys. Rev. Lett. 89, 236802 (2002).
Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au-8 clusters on MgO. Science 307, 403–407 (2005).
Rapoport, L. et al. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997).
Wilcoxon, J. P., Thurston, T. R. & Martin, J. E. Applications of metal and semiconductor nanoclusters as thermal and photo-catalysts. Nanostruct. Mater. 12, 993–997 (1999).
Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticies as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).
Kline, G., Kam, K. K., Ziegler, R. & Parkinson, B. A. Further studies of the photoelectrochemical properties of the group VI transition metal dichalcogenides. Solar Energy Mater. 6, 337 (1982).
Chan, M. K., Kim, J. S. & Rees, D. C. The nitrogenase FeMo cofactor and P-cluster pair — 2.2-angstrøm resolution structures. Science 260, 792–794 (1993).
Hinnemann, B. & Nørskov, J. K. Chemical activity of the nitrogenase FeMo cofactor with a central nitrogen ligand: Density functional study. J. Am. Chem. Soc. 126, 3920–3927 (2004).
Margulis, L., Salitra, G., Tenne, R. & Talianker, M. Nested fullerene-like structures. Nature 365, 113–114 (1993).
Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995).
Seifert, G., Terrones, H., Terrones, M., Jungnickel, G. & Frauenheim, T. Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85, 146–149 (2000).
Topsøe, H., Clausen, B. S. & Massoth, F. E. Hydrotreating Catalysis (Eds. Anderson, J. R. & Boudart, M.) (Springer Verlag, Berlin-Heidelberg, 1996).
Prins, R. Catalytic hydrodenitrogenation. Adv. Catal. 46, 399–464 (2002).
Nørskov, J. K., Clausen, B. S. & Topsøe, H. Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides. Catal. Lett. 13, 1–8 (1992).
Helveg, S. et al. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84, 951–954 (2000).
Brune, H. Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf. Sci. Rep. 31, 121–229 (1998).
Bollinger, M. V. et al. One-dimensional metallic edge states in MoS2 . Phys. Rev. Lett. 87, 196803 (2001).
Lauritsen, J. V. et al. Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J. Catal. 221, 510–522 (2004).
Bollinger, M. V., Jacobsen, K. W. & Nørskov, J. K. Atomic and electronic structure of MoS2 nanoparticles. Phys. Rev. B 67, 085410 (2003).
Kibsgaard, J., Lauritsen, J. V., Clausen, B. S., Topsøe, H. & Besenbacher, F. Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst. J. Am. Chem. Soc. 128, 13950–13958 (2006).
Byskov, L. S., Nørskov, J. K., Clausen, B. S. & Topsøe, H. Edge termination of MoS2 and CoMoS catalyst particles. Catal. Lett. 64, 95–99 (2000).
Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).
Schweiger, H., Raybaud, P., Kresse, G. & Toulhoat, H. Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: A theoretical study. J. Catal. 207, 76–87 (2002).
Byskov, L. S., Nørskov, J. K., Clausen, B. S. & Topsøe, H. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999).
Hensen, E. J. M., de Beer, V. H. J., van Veen, J. A. R. & van Santen, R. A. A refinement on the notion of type I and II (Co)MoS phases in hydrotreating catalysts. Catal. Lett. 84, 59–67 (2002).
Hinnemann, B., Nørskov, J. K. & Topsøe, H. A density functional study of the chemical differences between type I and type II MoS2-based structure in hydrotreating catalysts. J. Phys. Chem. B 109, 2245–2251 (2005).
Topsøe, H. & Clausen, B. S. Importance of Co–Mo–S type structures in hydrodesulfurization. Catal. Rev. Sci. Eng. 26, 395–420 (1984).
Wilcoxon, J. P. & Samara, G. A. Strong quantum-size effects in a layered semiconductor — MoS2 nanoclusters. Phys. Rev. B 51, 7299–7302 (1995).
Chikan, V. & Kelley, D. F. Size-dependent spectroscopy of MoS2 nanoclusters. J. Phys. Chem. B 106, 3794–3804 (2002).
Bertram, N. et al. Nanoplatelets made from MoS2 and WS2 . Chem. Phys. Lett. 418, 36–39 (2006).
Raybaud, P., Hafner, J., Kresse, G., Kasztelan, S. & Toulhoat, H. Ab initio study of the H2–H2S/MoS2 gas–solid interface: The nature of the catalytically active sites. J. Catal. 189, 129–146 (2000).
Acknowledgements
We thank P.G. Moses, B. Hinnemann, M. Bollinger, J.K. Nørskov and M. Brorson for stimulating discussions. J.V.L. acknowledges financial support from the Carlsberg Foundation.
Author information
Authors and Affiliations
Contributions
All authors conceived and designed the experiments: J.V.L., J.K. and S.H. performed the experiments. J.V.L. analysed the data, and all authors co-wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Lauritsen, J., Kibsgaard, J., Helveg, S. et al. Size-dependent structure of MoS2 nanocrystals. Nature Nanotech 2, 53–58 (2007). https://doi.org/10.1038/nnano.2006.171
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2006.171
This article is cited by
-
Monolayer MoS2-based transistors with low contact resistance by inserting ultrathin Al2O3 interfacial layer
Science China Technological Sciences (2023)
-
Fabrication of sub-20 nm MoS2 horizontal nanowire on silicon substrates by inclusion of precursors into polystyrene-b-polyethylene oxide nanopatterns: Detailed structural investigation
Nano Research (2023)
-
Sulfidation of Supported Ni, Mo and NiMo Catalysts Studied by In Situ XAFS
Topics in Catalysis (2023)
-
Interface structure and strain controlled Pt nanocrystals grown at side facet of MoS2 with critical size
Nano Research (2022)
-
Intrinsic properties of metallic edge states in MoS2 nanobelt
Journal of Materials Science: Materials in Electronics (2022)