[go: up one dir, main page]

Skip to main content
Log in

Stable Ultracompact Objects

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Ultra-Compact Objects (ucos) have been found tobe interesting astrophysical entities. The existence ofsuch a possible stable object has been discussed byconsidering the stability of Tolman's type VII solution which is one of the few physicallyrelevant exact solutions of Einstein's field equationsfor a static and spherically symmetric massdistribution. A distinctive feature of this solutionamong the others is that the surface density alsodrops to zero (i.e., the continuity of density, and therespective derivative of the metric parameter(λ′) is also assured at the surface of theconfiguration). The stability analysis of this solution,according to the variational method [20], as well as thebinding-energy criteria of fluid spheres shows that theconfiguration remains stable at least up to a central redshift, z0 ≤ 5.09, and surfaceredshift, za ≤ 0.78 (i.e. up to a u≡ mass/size) value ≤0.3428), thereby confirmingthe existence of an ultracompact object (uco) thatcorresponds to a mass to size ratio (u ≡ M/a) ≥ 1/3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Vishveshwara, C. V. (1970). Nature 227, 936.

    Google Scholar 

  2. Andersson, N., and Linneauss, S. (1992). Phys. Rev. D 46, 4179.

    Google Scholar 

  3. Seidel, E. (1997). In Proc. Int. Conference on Gravitation and Cosmology (Pune), S. Dhurandhar, T. Padmanabhan, eds. (Kluwer, Dordrecht).

    Google Scholar 

  4. Aguirregabiria, J. M., and Vishveshwara, C. V. (1998). Phys. Lett. A, to appear.

  5. Vishveshwara, C. V. (1996). “On the Black Hole Trail...A Personal Journey.” Fourth Vaidya-Raychaudhuri Endowment Award Lecture, XVII Meeting of the Indian Association of General Relativity and Gravitation, Madras.

  6. Kembhavi, A. K., and Vishveshwara, C. V. (1980). Phys. Rev. D 22, 2349.

    Google Scholar 

  7. Chandrasekhar, S., and Ferrari, V. (1991). Proc. R. Soc. London A 334, 449.

    Google Scholar 

  8. Van Paradijs, J. (1939). Astrophys. J. 234, 609.

    Google Scholar 

  9. Iyer, B. R., and Vishveshwara, C. V. (1985). In A Random Walk in Relativity and Cosmology, N. Dadhich, J. Krishna Rao, J. V. Narlikar, and C. V. Vishveshwara, eds. (Wiley Eastern Ltd., Delhi).

    Google Scholar 

  10. Iyer, B. R., Vishveshwara, C. V., and Dhurandhar, S. V. (1985). Class. Quantum Grav. 2, 219.

    Google Scholar 

  11. Lattimer, J. M., Prakash, M., Masak, D., and Yahil, A. (1990). Astrophys. J. 355, 241.

    Google Scholar 

  12. Kuchowicz, B. (1965). Acta Astronomica 15, 297.

    Google Scholar 

  13. de Felice, F. (1969). Nuovo Cimento B 63, 649.

    Google Scholar 

  14. Negi, P. S., and Durgapal, M. C. (1996). Astrophys Space Sci. 245, 97.

    Google Scholar 

  15. Abramowicz, M. A., and Prasanna, A. R. (1990). Mon. Not. R. Astron. Soc. 245, 720.

    Google Scholar 

  16. de Felice, F. (1991). Mon. Not. R. Astron. Soc. 252, 197.

    Google Scholar 

  17. de Felice, F., and Usseglio-Tomasset, S. (1993). Class. Quantum Grav. 10, 353.

    Google Scholar 

  18. Nemiroff, R. J., Becker, P. A., and Wood, K. S. (1993). Astrophys. J. 406, 590.

    Google Scholar 

  19. Tolman, R. C. (1939). Phys. Rev. 55, 364; Mehra, A. L. (1966). J. Austr. Math. Soc. 6, 153; Durgapal, M. C., and Rawat, P. S. (1980). Mon. Not. R. Astron. Soc. 192, 659.

    Google Scholar 

  20. Chadrasekhar, S. (1964). Phys. Rev. Lett. 12, 114,437; (1964). Astrophys. J. 140, 417.

    Google Scholar 

  21. Bardeen, J. M., Thorne, K. S., and Meltzer, D. W. (1966). Astrophys. J. 145, 505.

    Google Scholar 

  22. Zeldovich, Ya. B., and Novikov, I. D. (1978). Relativistic Astrophysics, vol. 1 (University of Chicago Press, Chicago).

    Google Scholar 

  23. Shapiro, S. L., and Teukolsky, S. A. (1983). Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York).

    Google Scholar 

  24. Buchdahl, H. A. (1959). Phys. Rev. 116, 1027.

    Google Scholar 

  25. de Felice, F., Yu, Y., and Fang, J. (1995). Mon. Not. R. Astron. Soc. 277, L17.

    Google Scholar 

  26. Tooper, R. F. (1965). Astrophys. J. 142, 1541.

    Google Scholar 

  27. Durgapal, M. C., and Pande, A. K. (1980). Indian J. Pure Appl. Phys. 18, 171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negi, P.S., Durgapal, M.C. Stable Ultracompact Objects. General Relativity and Gravitation 31, 13–20 (1999). https://doi.org/10.1023/A:1018807219245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018807219245

Navigation