[Conversion de bases polynomiales univariées.]
Dans cette Note nous fournissons une famille d'algorithmes de conversion qui met en relation les polynômes de Bernstein, les monômes et les familles classiques de polynômes orthogonaux, tels que ceux de Jacobi, Gegenbauer, Legendre, Chebyshev, Laguerre ou Hermite.
In this Note we provide a family of conversion algorithms relating Bernstein polynomials, monomials and the classical families of orthogonal polynomials, such as Jacobi, Gegenbauer, Legendre, Chebyshev, Laguerre and Hermite polynomials.
Accepté le :
Publié le :
Roberto Barrio 1 ; Juan Manuel Peña 2
@article{CRMATH_2004__339_4_293_0, author = {Roberto Barrio and Juan Manuel Pe\~na}, title = {Basis conversions among univariate polynomial representations}, journal = {Comptes Rendus. Math\'ematique}, pages = {293--298}, publisher = {Elsevier}, volume = {339}, number = {4}, year = {2004}, doi = {10.1016/j.crma.2004.06.017}, language = {en}, }
Roberto Barrio; Juan Manuel Peña. Basis conversions among univariate polynomial representations. Comptes Rendus. Mathématique, Volume 339 (2004) no. 4, pp. 293-298. doi : 10.1016/j.crma.2004.06.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.017/
[1] Numerical evaluation of the p-th derivative of the Jacobi series, Appl. Numer. Math., Volume 43 (2002), pp. 335-357
[2] R. Barrio, J.M. Peña, Evaluation of the derivative of a polynomial in Bernstein form, Appl. Math. Comput., in press
[3] On the numerical evaluation of linear recurrences, J. Comput. Appl. Math., Volume 150 (2003), pp. 71-86
[4] Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, 1996
[5] Legendre–Bernstein basis transformations, J. Comput. Appl. Math., Volume 119 (2000), pp. 145-160
[6] Fundamentals of Computer Aided Geometric Design (A.K. Peters, ed.), Wellesley, 1993
[7] Basis conversion among Bezier, Tchebyshev and Legendre, Comput. Aided Geom. Design, Volume 15 (1998), pp. 637-642
[8] Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, 1966
[9] Recurrence relations for connection coefficients between two families of orthogonal polynomials, J. Comput. Appl. Math., Volume 62 (1995), pp. 67-73
[10] Conversion of polynomials between different polynomial bases, IMA J. Numer. Anal., Volume 1 (1981), pp. 229-234
Cité par Sources :
* The first author is supported by the Spanish Research Grant DGYCT BFM2003-02137 and the second author is supported by the Spanish Research Grant DGYCT BFM2003-03510.
Commentaires - Politique