[go: up one dir, main page]

Skip to main content
Log in

Global stabilization and boundary control of coupled Fisher–Stream equation and application to SIS–Stream model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, the global stabilization of solutions to the initial-boundary value problem for the coupled model of the Fisher equation and Stream temperature equation (i.e., Fisher–Stream model) is studied. It is shown that under the non-homogeneous Dirichlet condition, the large time behavior of model analytical solutions is controlled by boundary conditions. Promoting to application, we establish similar conclusions in the coupled equation of the SIS model and Stream temperature equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available on request from the authors. The data that support this study are available from the corresponding author upon reasonable request.

References

  1. Alhumaizi, K., Henda, R., Soliman, M.: Numerical analysis of a reaction–diffusion–convection system. Comput. Chem. Eng. 27, 579–594 (2003)

    Article  MATH  Google Scholar 

  2. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reactiondiffusion model. Discrete Contin. Dyn. Syst. 21, 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, J., Gu, H.: Asymptotic behavior of solutions of free boundary problems for Fisher-kpp equation. J. Dyn. Differ. Equ. 33, 913–940 (2021)

  4. Choudhary, R., Singh, S., Das, P., Kumar, D.: A higher order stable numerical approximation for time-fractional non-linear Kuramoto-Sivashinsky equation based on quintic \(\cal{B}\)-spline. Math. Meth. Appl. Sci. 1–23 (2024). https://doi.org/10.1002/mma.9778

  5. Clancy, T.C.: Formalizing the interference temperature model. Wirel. Commun. Mob. Comput. 7, 1077–1086 (2007)

    Article  MATH  Google Scholar 

  6. Das, P., Rana, S.: Theoretical prospects of fractional order weakly singular Volterra Integro differential equations and their approximations with convergence analysis. Math. Methods Appl. Sci. 44, 9419–9440 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Das, P., Rana, S., Ramos, H.: A perturbation-based approach for solving fractional-order Volterra–Fredholm integro differential equations and its convergence analysis. Int. J. Comput. Math. 97, 1994–2014 (2020)

  8. Das, P., Rana, S., Vigo-Aguiar, J.: Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature. Appl. Numer. Math. 148, 79–97 (2020)

  9. Das, P., Vigo-Aguiar, J.: Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter. J. Comput. Appl. Math. 354, 533–544 (2019)

  10. Das, P.: An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh. Numer. Algorithms 81, 465–487 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, P.: A higher order difference method for singularly perturbed parabolic partial differential equations. J. Differ. Equ. Appl. 24, 452–477 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Das, P.: Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems. J. Comput. Appl. Math. 290, 16–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doering, C.R., Wu, J., Zhao, K., et al.: Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion. Physica D 376, 144–159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frankignoul, C., Reynolds, R.W.: Testing a dynamical model for mid-latitude sea surface temperature anomalies. J. Phys. Oceanogr. 13, 1131–1145 (1983)

    Article  MATH  Google Scholar 

  15. Friedman, A.: Partial Differential Equations of Parabolic Type. Robert E. Krieger Publishing, Malabar (1983)

    MATH  Google Scholar 

  16. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 353–369 (1937)

    Article  MATH  Google Scholar 

  17. Kolmogorov, A., Petrovskii, I., Piskunov, N.: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In: Tikhomirov, V.M. (ed.) Selected Works of A.N. Kolmogorov I, Kluwer, 1991, pp. 248–270, Translated by V. M. Volosov from Bull Mo scow Univ Math Mech 1:1–26 (1937)

  18. Kot, M.: Elementals of Mathematical Biology. The Cambridge University Press, Cambridge (2001)

  19. Kumar, K., Podila, P.C., Das, P., Ramos, H.: A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems. Math. Meth. Appl. Sci. 44, 12332–12350 (2021). https://doi.org/10.1002/mma.7358

  20. Kumar, S., Das, P., Kumar, K.: Adaptive mesh based efficient approximations for Darcy scale precipitation–dissolution models in porous media. Int. J. Numer. Methods. Fluids. 96, 1415–1444 (2024). https://doi.org/10.1002/fld.5294

  21. Kumar, S., Kumar, S., Das, P.: Second-order a priori and a posteriori error. estimations for integral boundary value problems of nonlinear singularly perturbed parameterized form. Numer. Algorithms. 1–28 (2024). https://doi.org/10.1007/s11075-024-01918-5

  22. Li, B., Wang, F., Zhao, K.: Large time dynamics of 2d semi-dissipative Boussinesq equations. Nonlinearity 33, 2481–2501 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Larson, D.A.: Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type. SIAM J. Appl. Math. 34, 93–104 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, G., Zhang, X.: Asymptotic dynamics of a logistic SIS epidemic reaction–diffusion model with nonlinear incidence rate. J. Math. Anal. Appl. 520, 126866 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  25. Murray, J.D.: Mathematical Biology. I. An Introduction. Interdisciplinary Applied Mathematics, vol. 17, 3rd edn. Springer, New York (2002)

    MATH  Google Scholar 

  26. Saini, S., Das, P., Kumar, S.: Parameter uniform higher order numerical treatment for singularly perturbed Robin type parabolic reaction diffusion multiple scale problems with large delay in time. Appl. Numer. Math. 196, 1–21 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saini, S., Das, P., Kumar, S.: Computational cost reduction for coupled system of multiple scale reaction diffusion problems with mixed type boundary conditions having boundary layers. RACSAM 117, 66 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  28. Santra, S., Mohapatra, J., Das, P., et al.: Higher order approximations for fractional order integro-parabolic partial differential equations on an adaptive mesh with error analysis. Comput. Math. Appl. 150, 87–101 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shakti, D., Mohapatra, J., Das, P., et al.: A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. J. Comput. Appl. Math. 404, 113167 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shiromani, R., Shanthi, V., Das, P.: A higher order hybrid-numerical approximation for a class of singularly perturbed two-dimensional convection–diffusion elliptic problem with non-smooth convection and source terms. Comput. Math. Appl. 142, 9–30 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  31. Srivastava, H.M., Nain, A.K., Vats, R.K., et al.: A theoretical study of the fractional-order p-Laplacian nonlinear Hadamard type turbulent flow models having the Ulam–Hyers stability. RACSAM 117, 160 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sinokrot, B.A., Stefan, H.G.: Stream temperature dynamics: measurements and modeling. Water Resour. Res. 29, 2299–2312 (1993)

    Article  MATH  Google Scholar 

  33. Suo, J., Li, B.: Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent incidence function in a heterogeneous environment. Math. Biosci. Eng. 17, 418–441 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, X., Cui, R.: Analysis on a diffusive SIS epidemic model with saturated incidence rate and linear source in a heterogeneous environment. J. Math. Anal. Appl. 490, 124212 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Takacs, L.L.: A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Mon. Weather Rev. 113, 1050–1065 (1985)

    Article  MATH  Google Scholar 

  36. Tong, Y., Ahn, I., Lin, Z.: The impact factors of the risk index and diffusive dynamics of a SIS free boundary model. Infect. Dis. Model. 7, 605–624 (2022)

    MATH  Google Scholar 

  37. Wang, F., Xue, L., Zhao, K., et al.: Global stabilization and boundary control of generalized Fisher/KPP equation and application to diffusive SIS model. J. Differ. Equ. 275, 391–417 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, J., Zhao, K.: On 2D incompressible Boussinesq systems: global stabilization under dynamic boundary conditions. J. Differ. Equ. 367, 246–289 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  39. Westhoff, M.C., Savenije, H.H.G., Luxemburg, W.M., et al.: A distributed stream temperature model using high resolution temperature observations. Hydrol. Earth Syst. Sci. 11, 1469–1480 (2007)

    Article  MATH  Google Scholar 

  40. Wang, Z., Zhou, T.: Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. DCDS-B 26, 5023–5045 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions which help substantially improve the quality of the paper. Wang F was partially supported by the Natural Science Foundation of Hunan Province (No. 2023JJ0007), the National Natural Science Foundation of China (No. 12001064), the Hunan Provincial Research Project on Teaching Reform in Colleges and Universities (No. HNJG-2021-0462), and the National First-class Offline Undergraduate Course Complex Variable Functions and Integral Transformations. Liu Y T and Chen Y X were partially supported by the Postgraduate Research Innovation Project of Hunan Province (No. CX20230928) and the Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (Grant No.2017TP1017).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work, and reviewed the paper.

Corresponding author

Correspondence to Fang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Liu, Y. & Chen, Y. Global stabilization and boundary control of coupled Fisher–Stream equation and application to SIS–Stream model. J. Appl. Math. Comput. 71, 279–302 (2025). https://doi.org/10.1007/s12190-024-02226-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02226-w

Keywords

Mathematics Subject Classification