[go: up one dir, main page]

Skip to main content
Log in

Modelling and analysis of a fractional-order epidemic model incorporating genetic algorithm-based optimization

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Infectious diseases have always been a threat to the smooth running of our daily activities. To regulate the disease’s devastating outcome, we have performed a qualitative study of infectious disease using an SIR model. While formulating the model, we have taken into account the saturated incidence function with three controls, namely, treatment control, vaccination control, and media awareness. To make the model more robust, we have updated the model using Caputo fractional-order differential equation. We have determined the existence and uniqueness of the solution along with all possible equilibrium points. We have also obtained the basic reproduction number and the criteria of asymptotic local and global stability, taking the basic reproduction number as the threshold parameter. Finally, to control the disease, we have performed the optimization using a metaheuristic search and optimization technique, genetic algorithm (GA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data is used for the research described in the article.

References

  1. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. Lond. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  2. Majee, S., Jana, S., Das, D.K., Kar, T.K.: Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability. Chaos Soliton Fract. (2022). https://doi.org/10.1016/j.chaos.2022.112291

    Article  MathSciNet  MATH  Google Scholar 

  3. Maji, M., Khajanchi, S.S.: A fractional-order yeast prion mathematical model and its solution. J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02063-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Khajanchi, S., Mondal, J., Tiwari, P.K.: Optimal treatment strategies using dendritic cell vaccination for a tumor model with parameter identifiability. J. Biol. Syst. 31(2), 487–516 (2023). https://doi.org/10.1142/S0218339023500171

    Article  MathSciNet  MATH  Google Scholar 

  5. Habenom, H., Suthar, D., Baleanu, D., Purohit, S.: A numerical simulation on the effect of vaccination and treatments for the fractional hepatitis b model. J. Comput. Nonlinear Dyn. 16(1), 1–6 (2021)

    MATH  Google Scholar 

  6. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020(1), 1–16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barman, S., Jana, S., Majee, S., et al.: Complex dynamics of a fractional-order epidemic model with saturated media effect. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09932-x

    Article  MATH  Google Scholar 

  8. Barman, S., Jana, S., Majee, S., Kar, T.K.: Optimal treatment and stochastic stability on a fractional-order epidemic model incorporating media awareness. Results Control Optim. 15, 100419 (2024). https://doi.org/10.1016/j.rico.2024.100419

    Article  MATH  Google Scholar 

  9. Majee, S., Jana, S., Kar, T.K., Barman, S., Das, D.K.: Modeling and analysis of Caputo-type fractional-order SEIQR epidemic model. Int. J. Dynam. Control 12, 148–166 (2024). https://doi.org/10.1007/s40435-023-01348-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Majee, S., Adak, S., Jana, S., Mandal, M., Kar, T.K.: Complex dynamics of a fractional-order SIR system in the context of COVID-19. J. Appl. Math Comput. (2022). https://doi.org/10.1007/s12190-021-01681-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Majee, S., Jana, S., Barman, S., Kar, T.K.: Transmission dynamics of monkeypox virus with treatment and vaccination controls: a fractional order mathematical approach. Phys. Scr. (2023). https://doi.org/10.1088/1402-4896/acae64

    Article  MATH  Google Scholar 

  12. Majee, S., Jana, S., Das, D.K., Kar, T.K.: Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability. Chaos Soliton Fract. (2022). https://doi.org/10.1016/j.chaos.2022.112291

    Article  MathSciNet  MATH  Google Scholar 

  13. Olaniyi, S., Alade, T.O., Chuma, F.M., Ogunsola, A.W., Aderele, O.R., Abimbade, S.F.: A fractional-order nonlinear model for a within-host chikungunya virus dynamics with adaptive immunity using Caputo derivative operator. Healthcare Anal. 4, 100205 (2023). https://doi.org/10.1016/j.health.2023.100205

    Article  MATH  Google Scholar 

  14. Olaniyi, S., Abimbade, S.F., Chuma, F.M., Adepoju, O.A., Falowo, O.D.: A fractional-order tuberculosis model with efficient and cost-effective optimal control interventions. Decis. Anal. J. 8, 100324 (2023). https://doi.org/10.1016/j.dajour.2023.100324

    Article  MATH  Google Scholar 

  15. Goswami, N.K., Olaniyi, S., Abimbade, S.F.B., Chuma, F.M.: A mathematical model for investigating the effect of media awareness programs on the spread of COVID-19 with optimal control. Healthcare Anal. 5, 100300 (2024). https://doi.org/10.1016/j.health.2024.100300

    Article  MATH  Google Scholar 

  16. Sintunavarat, W., Turab, A.: Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator. Math Comput. Simul. 198, 65–84 (2022). https://doi.org/10.1016/j.matcom.2022.02.009

    Article  MathSciNet  MATH  Google Scholar 

  17. Kar, T.K., Nandi, S.K., Jana, S., Mandal, M.: Stability and bifurcation analysis of an epidemic model with the effect of media. Chaos Soliton Fract. 120, 188–199 (2019). https://doi.org/10.1016/j.chaos.2019.01.025

    Article  MathSciNet  MATH  Google Scholar 

  18. Olaniyi, S., Falowo, O.D., Okosun, K.O., Mukamuri, M., Obabiyi, O.S., Adepoju, O.A.: Effect of saturated treatment on malaria spread with optimal intervention. Alex. Eng. J. 65, 443–459 (2023). https://doi.org/10.1016/j.health.2024.100300

    Article  MATH  Google Scholar 

  19. Olaniyi, S., Kareem, G.G., Abimbade, S.F., et al.: Mathematical modelling and analysis of autonomous HIV/AIDS dynamics with vertical transmission and nonlinear treatment. Iran J. Sci. 48, 181–192 (2024). https://doi.org/10.1007/s40995-023-01565-w

    Article  MathSciNet  MATH  Google Scholar 

  20. Sörensen, K., Sevaux, M., Glover, F.W.: A History of Metaheuristics. In: Martí, R., Pardalos, P., Resende, M. (eds) Handbook of Heuristics. Springer Cham. (2018) https://doi.org/10.1007/978-3-319-07124-4-4

  21. Osman, I.H.: Focused issue on applied meta-heuristics. Comput. Ind. Eng. 44(2), 205–207 (2003). https://doi.org/10.1016/S0360-8352(02)00175-4

    Article  MATH  Google Scholar 

  22. Lara-Montaño, O.D., Gómez-Castroa, F.I., Gutiérrez-Antonio, C.: Comparison of the performance of different metaheuristic methods for the optimization of shell-and-tube heat exchanger. Comput. Chem. Eng. 152, 107403 (2021). https://doi.org/10.1016/j.compchemeng.2021.107403

    Article  Google Scholar 

  23. Raborn, A.W., Leite, W.L., Marcoulides, K.M.: A comparison of metaheuristic optimization algorithms for scale short-form development. Educ. Psychol. Meas. 80(5), 910–931 (2020). https://doi.org/10.1177/0013164420906600

    Article  Google Scholar 

  24. Panda, S., Padhy, N.P.: Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput. 8(4), 1418–1427 (2008). https://doi.org/10.1016/j.asoc.2007.10.009

    Article  MATH  Google Scholar 

  25. Kwuimy, C.A.K., Nazari, F., Jiao, X., et al.: Nonlinear dynamic analysis of an epidemiological model for COVID-19 including public behavior and government action. Nonlinear Dyn. 101, 1545–1559 (2020). https://doi.org/10.1007/s11071-020-05815-z

    Article  MATH  Google Scholar 

  26. Yarsky, P.: Using a genetic algorithm to fit parameters of a COVID-19 SEIR model for US states. Math. Comput. Simul. 185, 687–695 (2021). https://doi.org/10.1016/j.matcom.2021.01.022

    Article  MathSciNet  MATH  Google Scholar 

  27. Abdellatif, E.O., Karim, E.M., Saliha, C., Hicham, B.: Genetic algorithms for optimal control of a continuous model of a diabetic population, 2022 IEEE 3rd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS) Fez Morocco (2022) 1-5 https://doi.org/10.1109/ICECOCS55148.2022.9983325

  28. Higazy, M., Alyami, M.A.: New Caputo-Fabrizio fractional order SEIASqEqHR model for COVID-19 epidemic transmission with genetic algorithm based control strategy. Alex. Eng. J. 59(6), 4719–4736 (2020). https://doi.org/10.1016/j.aej.2020.08.034

    Article  MATH  Google Scholar 

  29. Li, Y., Cui, J.: The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2353–2365 (2009). https://doi.org/10.1016/j.cnsns.2008.06.024

    Article  MathSciNet  MATH  Google Scholar 

  30. Jana, S., Nandi, S.K., Kar, T.K.: Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment. Acta Biotheor. 64, 65–84 (2016). https://doi.org/10.1007/s10441-015-9273-9

    Article  MATH  Google Scholar 

  31. Du, M., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3, 1–3 (2013)

    Article  MATH  Google Scholar 

  32. Maji, S., Natesan, S.: Analytical and numerical solutions of time-fractional advection-diffusion-reaction equation. Appl. Numer. Math 185, 549–570 (2023). https://doi.org/10.1016/j.apnum.2022.12.013

    Article  MathSciNet  MATH  Google Scholar 

  33. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Diethelm, K.: Efficient solution of multi-term fractional differential equations using \(P(EC)^mE\) methods. Computing 71, 305–319 (2003). https://doi.org/10.1007/s00607-003-0033-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of S. Adak is supported by Indian Institute of Engineering Science and Technology (IIEST), Shibpur, India (No. 1878/1(5)/Exam, dated: 19th January, 2021), the work of S. Barman is financially supported by National Fellowship for Scheduled Caste Students (UGC-NFSC, UGC-Ref.No.:-191620004584, Dated:-20/05/2020), the work of S. Majee is financially supported by Council of Scientific and Industrial Research (CSIR), India (File No. 08/003(0142)/2020-EMR-I, dated: 18th March, 2020), and the work of T.K. Kar is financially supported by Science and Engineering Research Board (File No. MTR/2022/000734, dated: 19/12/2022), Department of Science and Technology, Government of India. In addition, the authors would like to thank anonymous reviewers and the Editor-in-Chief, Chin-Hong Park for their constructive comments and suggestions to improve the quality and presentation of the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soovoojeet Jana.

Ethics declarations

Conflict of interest

The authors declare that there is no Conflict of interest.

Author Contribution

All the authors have contributed equally in the preparation of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Algorithm of GA

———————————————————————————-

Input:

Objective function, \(\mathscr {R}_0\)

Constraint function,

Population size, n

Maximum number of iterations, M

Crossover probability,

Mutation probability,

Upper and lower bound of variables

Output:

Global optimal solution \(O_b\).

———————————————————————————- 

begin

Generate initial population randomly containing n chromosomes \(O_i,\)

\((i=1,~2,~3,...,~n)\)

Set iteration t=0;

Determine fitness value;

Check if constraint conditions are met;

while(\(t<M\))

Select pair of chromosomes from initial population based on fitness value;

Apply crossover on selected pair with crossover probability;

Apply mutation on the offspring generated from crossover with mutation

probability;

Replace old population with new population;

Increase iteration t by 1

end while

return the best solution, \(O_b\)

end

———————————————————————————-

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adak, S., Barman, S., Jana, S. et al. Modelling and analysis of a fractional-order epidemic model incorporating genetic algorithm-based optimization. J. Appl. Math. Comput. 71, 901–925 (2025). https://doi.org/10.1007/s12190-024-02224-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02224-y

Keywords