[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Modeling and analysis of Caputo-type fractional-order SEIQR epidemic model

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this research, a susceptible-exposed-infected-quarantine-recovered-type epidemic model containing fractional-order differential equations is suggested and examined in order to better understand the dynamical behavior of the infectious illness in the presence of vaccination and treatments. The non-negative and bounded solutions of our proposed model are examined for existence and uniqueness. We investigate the explicit formulation of a threshold \(R_0\), often known as the basic reproduction number, using the next-generation matrix technique. Depending on the value of \(R_0\), one endemic equilibrium exists and is stable for \(R_0>1\), and one disease-free equilibrium (exist for all values of \(R_0\)) is stable for \(R_0<1\). This article has also noticed the emergence of a transcritical bifurcation. The relevance of using vaccination and treatments as controls has been met by formulating a fractional-order optimal control problem. The resulting theoretical conclusions are supported by a few numerical simulations. Ultimately, a global sensitivity analysis is carried out to identify the parameters that have the greatest influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Cauchemez S, Donnelly CA, Reed C, Ghani AC, Fraser C, Kent CK et al (2009) Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States. N Engl J Med 361(27):2619–2627

    Article  CAS  PubMed  Google Scholar 

  2. Cauchemez S, Fraser C, Van Kerkhove MD, Donnelly CA, Riley S, Rambaut A et al (2014) Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. Lancet Infect Dis 14(1):50–56

    Article  PubMed  Google Scholar 

  3. Riley S et al (2003) Transmission dynamics of the etiological agent of sars in Hong Kong: impact of public health interventions. Science 300(5627):1961–1966

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Burghardt K, Verzijl C, Huang J, Ingram M, Song B, Hasne MP (2016) Testing modeling assumptions in the West Africa ebola outbreak. Sci Rep 6(1):34598

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suparit P, Wiratsudakul A, Modchang C (2018) A mathematical model for Zika virus transmission dynamics with a time-dependent mosquito biting rate. Theor Biol Med Modell 15(1):1–11

    Article  Google Scholar 

  6. Majee S, Adak S, Jana S, Mandal M, Kar TK (2022) Complex dynamics of a fractional-order SIR system in the context of COVID-19. J Appl Math Comput 68:4051–4074. https://doi.org/10.1007/s12190-021-01681-z

  7. Mandal M, Jana S, Majee S, Khatua A, Kar TK (2022) Forecasting the pandemic COVID-19 in India: a mathematical approach. J Appl Nonlinear Dyn 11(3):549–571

    Article  MathSciNet  Google Scholar 

  8. Fang X, He Q, Ma H et al (2023) Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate. Appl Math Mech-Engl Ed 44:1351–1366. https://doi.org/10.1007/s10483-023-3017-6

  9. Fang XQ, Ma HW, Zhu CS (2023) Non-local multi-fields coupling response of a piezoelectric semiconductor nanofiber under shear force. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2022.2158503

    Article  Google Scholar 

  10. Bernoulli D (1760) Essai d’une nouvelle analyse de la mortalite cause par la petite verole. Mem math Phys Acad R Sci Paris 1–45

  11. Kermack WO, McKendric AG (1927) Contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser A 115:700–721

    Article  ADS  Google Scholar 

  12. Huang C, Cai L, Cao J (2018) Linear control for synchronization of a fractional-order time-delayed chaotic nancial system. Chaos Solitons Fractals 113:326–332

    Article  ADS  MathSciNet  Google Scholar 

  13. Rakkiyappan R, Velmurugan G, Cao J (2015) Stability analysis of fractional order complex-valued neural networks with time delays. Chaos Solitons Fractals 78:297–316

    Article  ADS  MathSciNet  Google Scholar 

  14. Al-Smadi M, Abu Arqub O, Gaith M (2021) Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. Math Meth Appl Sci 44:8472–8489

    Article  MathSciNet  Google Scholar 

  15. Djennadi S, Shawagfeh N, Inc M, Osman MS, Arqub JF, Arqub OA (2021) The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys Scr 96(9):094006

    Article  ADS  Google Scholar 

  16. Huo J, Zhao H, Zhu L (2015) The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal Real World Appl 26:289–305

    Article  MathSciNet  Google Scholar 

  17. Pinto CM, Carvalho AR (2017) A latency fractional order model for HIV dynamics. J Comput Appl Math 312:240–256

    Article  MathSciNet  Google Scholar 

  18. Majee S, Jana S, Das DK, Kar TK (2022) Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability. Chaos Solitons Fractals 161:112291

    Article  MathSciNet  Google Scholar 

  19. Majee S, Jana S, Barman S, Kar TK (2023) Transmission dynamics of monkeypox virus with treatment and vaccination controls: a fractional order mathematical approach. Phys Scr 98(2):024002

    Article  ADS  Google Scholar 

  20. Majee S, Jana S, Kar TK (2023) Dynamical analysis of monkeypox transmission incorporating optimal vaccination and treatment with cost-effectiveness. Chaos 33:043103. https://doi.org/10.1063/5.0139157

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  21. Petras I (2011) Fractional-order nonlinear systems: modeling aanlysis and simulation. Higher Education Press, Beijing

    Book  Google Scholar 

  22. Podlubny I (1999) Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press.

  23. Delavari H, Baleanu D, Sadati J (2012) Stability analysis of Caputo fractional order nonlinear system revisited. Non Linear Dyn 67:2433–2439

    Article  MathSciNet  Google Scholar 

  24. Deshpande AS, Daftardar-Gejji V, Sukale YV (2017) On Hopf bifurcation in fractional dynamical systems. Chaos Solitons Fractals 98:189–198

    Article  ADS  MathSciNet  Google Scholar 

  25. Guo Y (2014) The stability of solutions for a fractional predator- prey system, abstract and applied analysis 7

  26. Jana S, Mandal M, Nandi SK, Kar TK (2021) Analysis of a fractional order SIS epidemic model with saturated treatment. Int J Model Simul Sci Comput 12(01):2150004

    Article  Google Scholar 

  27. Ahmed E, El-Sayed AMA, El-Saka HAA (2007) Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J Math Anal Appl 325:542553

    Article  MathSciNet  Google Scholar 

  28. Djordjevic VD, Jaric J, Fabry B, Fredberg JJ, Stamenovic D (2003) Fractional derivatives embody essential features of cell rheological behavior. Ann Biomed Eng 31:692699

    Article  Google Scholar 

  29. El-Sayed AMA, Salman SM, Elabd NA (2016) On a fractional-order delay Mackey–Glass equation. Adv Differ Equ. https://doi.org/10.1186/s13662-016-0863-x

    Article  MathSciNet  Google Scholar 

  30. Salman SM, Yousef AM (2017) On a fractional-order model for HBV infection with cure of infected cells. J Egypt Math Soc 4(25):445–451

  31. Yousef AM, Salman SM (2016) Backward bifurcation in a fractional-order SIRS epidemic model with a nonlinear incidence rate. Int J Nonlinear Sci Num Simul 7–8(17):401–412

    Article  MathSciNet  Google Scholar 

  32. Majee S, Barman S, Khatua A et al (2023) The impact of media awareness on a fractional-order SEIR epidemic model with optimal treatment and vaccination. Eur Phys J Spec Top. https://doi.org/10.1140/epjs/s11734-023-00910-9

    Article  Google Scholar 

  33. Diethelm K (2016) Monotonicity of functions and sign changes of their Caputo derivatives. Fract Calc Appl Anal 19:561–566

    Article  MathSciNet  Google Scholar 

  34. Li Hong, Zhang L, Hu C, Jiang YL (2017) Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J Appl Math Comput 54:435–449

    Article  MathSciNet  Google Scholar 

  35. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  PubMed  Google Scholar 

  36. Ahmed E, El-Sayed AMA, El-Saka HAA (2006) On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys Lett A 358(1):1–4

    Article  ADS  MathSciNet  CAS  Google Scholar 

  37. Guckenheimer G, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    Book  Google Scholar 

  38. Jana S, Haldar P, Kar TK (2017) Mathematical analysis of an epidemic model with isolation and optimal controls. Int J Comput Math 2016(94):1318–1336

    Article  MathSciNet  Google Scholar 

  39. Kar TK, Jana S (2013) A theoretical study on mathematical modeling of an infectious disease with application of optimal control. Biosystems 111(1):37–50

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko E (1964) The mathematical theory of optimal processes, international series of monographs in pure and applied mathematics. Pergamon Press, Oxford

    Google Scholar 

  41. Baleanu D, Hasanabadi M, Mahmoudzadeh Vaziri A, Jajarmi A (2023) A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach. Chaos Solitons Fractals. https://doi.org/10.1016/j.chaos.2022.113078

    Article  MathSciNet  Google Scholar 

  42. Fleming WH, Rishel RW (1975) Deterministic and stochastic optimal control. Springer, New York

    Book  Google Scholar 

  43. Deng W (2007) Short memory principle and a predictor-corrector approach for fractional differential equations. J Comput Appl Math 206(1):174–188. https://doi.org/10.1016/j.cam.2006.06.008

    Article  ADS  MathSciNet  Google Scholar 

  44. Deng W (2007) Numerical algorithm for the time fractional Fokker–Planck equation. J Comput Phys 227:1510–1522. https://doi.org/10.1016/j.jcp.2007.09.015

    Article  ADS  MathSciNet  Google Scholar 

  45. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

  46. Wu J, Dhingra R, Gambhir M, Remais JV (2013) Sensitivity analysis of infectious disease models: methods, advances and their application. J R Soc Interface. https://doi.org/10.1098/rsif.2012.1018

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abboubakar H, Fandio R, Sofack BS, Fouda HPE (2022) Fractional dynamics of a measles epidemic model. Axioms 11:363

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Pushpendra Kumar, Guest Editor of the journal and organizer committee member of ICFCTAN-2023, for his continuous assistance regarding the preparation of this article. Also, all the authors are thankful to the anonymous reviewers and the editor for their comments and suggestions to substantially improve the revised manuscript.

Funding

The research work of Suvankar Majee is financially supported by Council of Scientific and Industrial Research (CSIR), India (File No. 08/003(0142)/2020-EMR-I, dated: March 18, 2020), the work of Snehasis Barman is financially supported by NATIONAL FELLOWSHIP FOR SCHEDULED CAST STUDENTS(UGC-NFSC, UGC-Ref.No.:-191620004584, Dated:-20/05/2020), and the work of Prof. T. K. Kar is financially supported by Science and Engineering Research Board (File No. MTR/2022/000734, dated 19/12/2022), Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Each author has contributed equally toward the preparation of the manuscript.

Corresponding author

Correspondence to Suvankar Majee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and materials

The data that support the findings of this study are available within the article.

Appendices

Appendix A: Proof of Theorem 3.2

Let us take two points \(X=(S,E,I,Q,R)\) and \(X_1=(S_1,E_1,I_1,Q_1,R_1)\) in \(\Omega \) and the mapping \(\Upsilon :\Omega \rightarrow {\mathbb {R}}^5\) where

$$\begin{aligned} \Upsilon (X)=\left( \Upsilon _1(X),\Upsilon _2(X),\Upsilon _3(X),\Upsilon _4(X),\Upsilon _5(X)\right) \end{aligned}$$

with

$$\begin{aligned} \begin{aligned} \Upsilon _1(X)&=A^{\alpha } (1-u_1)-\frac{m^{\alpha } S I}{a+I}-d^{\alpha } S+\rho ^{\alpha } R\\ \Upsilon _2(X)&=\frac{m^{\alpha } SI}{a+I}-(\beta _1^{\alpha } +\gamma ^{\alpha } +\sigma _1^{\alpha } +d^{\alpha } )E\\ \Upsilon _3(X)&=\gamma ^{\alpha } E-(\beta _2^{\alpha } +\mu ^{\alpha } +b^{\alpha } u_2+d^{\alpha } +\delta ^{\alpha } )I\\ \Upsilon _4(X)&=\beta _1^{\alpha } E+\beta _2^{\alpha } I-(\sigma _2^{\alpha } +d^{\alpha } )Q\\ \Upsilon _5(X)&=A^{\alpha } u_1+\sigma _1^{\alpha } E+(\mu ^{\alpha } +b^{\alpha } u_2)I+\sigma _2^{\alpha } Q\\&\quad -(d^{\alpha } +\rho ^{\alpha } )R \end{aligned} \end{aligned}$$

Now for \(X,X_1\in \Omega \), we can write

$$\begin{aligned}&||\Upsilon (X)-\Upsilon (X_1)||\\&\quad =\left| -\frac{m^{\alpha } S I}{a+I}+\frac{m^{\alpha } S_1 I_1}{a+I_1}-d^{\alpha } (S-S_1)+\rho ^{\alpha } (R-R_1)\right| \\&\qquad +\left| \frac{m^{\alpha } SI}{a+I}\!-\!\frac{m^{\alpha } S_1 I_1}{a+I_1}\!-\!(\beta _1^{\alpha } \!+\!\gamma ^{\alpha } +\sigma _1^{\alpha } +d^{\alpha } )(E-E_1)\right| \\&\qquad +|\gamma ^{\alpha } (E-E_1)\!-\!(\beta _2^{\alpha } \!+\!\mu ^{\alpha } \!+\!b^{\alpha } u_2\!+\!d^{\alpha } +\delta ^{\alpha } )(I-I_1)|\\&\qquad +|\beta _1^{\alpha } (E-E_1)+\beta _2^{\alpha } (I-I_1)-(\sigma _2^{\alpha } +d^{\alpha } )(Q-Q_1)|\\&\qquad +|\sigma _1^{\alpha } (E-E_1)+(\mu ^{\alpha } +b^{\alpha } u_2)(I-I_1)\\&\qquad +\sigma _2^{\alpha } ( Q-Q_1)-(d^{\alpha } +\rho ^{\alpha } )(R-R_1)| \\&\quad \le \frac{|m^{\alpha } SI(a+I_1)-m^{\alpha } S_1I_1(a+I)|}{|(a+I)(a+I_1)|}\\&\qquad +d^{\alpha } |S-S_1|+\rho ^{\alpha } |R-R_1|\\&\qquad +\frac{|m^{\alpha } SI(a+I_1)-m^{\alpha } S_1I_1(a+I)|}{|(a+I)(a+I_1)|}\\&\qquad +(\beta _1^{\alpha } +\gamma ^{\alpha } +\sigma _1^{\alpha } +d^{\alpha } )|E-E_1|\\&\qquad +\gamma ^{\alpha } |E-E_1|+(\beta _2^{\alpha } +\mu ^{\alpha } +b^{\alpha } u_2+d^{\alpha }\\&\qquad +\delta ^{\alpha } )|I-I_1|+\beta _1^{\alpha } |E-E_1|+\beta _2^{\alpha } |I-I_1|\\&\qquad +(\sigma _2^{\alpha } +d^{\alpha } )|Q-Q_1|+\sigma _1^{\alpha } |E-E_1|\\&\qquad +(\mu ^{\alpha } +b^{\alpha } u_2)|I-I_1|+\sigma _2^{\alpha } |Q-Q_1|\\&\qquad +(d^{\alpha } +\rho ^{\alpha } )|R-R_1| \\&\quad = 2\frac{a m^{\alpha } |I||S\!-\!S_1|\!+\!a m^{\alpha } |S_1||I\!-\!I_1| \!+\!m^{\alpha } |I_1||I||S\!-\!S_1|}{|(a\!+\!I)(a\!+\!I_1)|}\\&\qquad +d^{\alpha } |S-S_1|+(2\beta _1^{\alpha } +2\gamma ^{\alpha } +2\sigma _1^{\alpha } +d^{\alpha } )|E-E_1|\\&\qquad +(2\beta _2^{\alpha } +2\mu ^{\alpha } +2b^{\alpha } u_2+d^{\alpha } +\delta ^{\alpha } )|I-I_1|\\&\qquad +(2\sigma _2^{\alpha } +d^{\alpha } )|Q-Q_1|+(d^{\alpha } +2\rho ^{\alpha } )|R-R_1| \\&\quad \le 2k\{a m^{\alpha } p_2|S-S_1|+a m^{\alpha } p_2|I-I_1|\\&\qquad +m^{\alpha } p_2^2|S-S_1|\}+d^{\alpha } |S-S_1|\\&\qquad +(2\beta _1^{\alpha } +2\gamma ^{\alpha } +2\sigma _1^{\alpha } +d^{\alpha } )|E-E_1|\\&\qquad +(2\beta _2^{\alpha } +2\mu ^{\alpha } +2b^{\alpha } u_2+d^{\alpha } +\delta ^{\alpha } )|I-I_1|\\&\qquad +(2\sigma _2^{\alpha } +d^{\alpha } )|Q-Q_1|+(d^{\alpha } +2\rho ^{\alpha } )|R-R_1|\\&\quad \text { where }|(a+I)(a+I_1)|\ge \frac{1}{k} \\&\quad \le (2akp_2m^{\alpha } +2kp_2^2 m^{\alpha } + d^{\alpha } ) |S-S_1|+(2\beta _1^{\alpha }\\&\qquad +2\gamma ^{\alpha } +2\sigma _1^{\alpha } +d^{\alpha } )|E-E_1|\\&\qquad +(2akp_2 m^{\alpha } +2\beta _2^{\alpha } +2\mu ^{\alpha } +2b^{\alpha } u_2+d^{\alpha } \\&\qquad +\delta ^{\alpha } )|I-I_1|+(2\sigma _2^{\alpha } +d^{\alpha } )|Q-Q_1|\\&\qquad +(d^{\alpha } +2\rho ^{\alpha } )|R-R_1|\\&\quad \le l(|S-S_1|+|E-E_1|+|I-I_1|+|Q-Q_1|\\&\qquad +|R-R_1|)= l||X-X_1|| \end{aligned}$$

where \(l=\max \{(2akp_2m^{\alpha } +2kp_2^2\,m^{\alpha } + d^{\alpha } ),(2\beta _1^{\alpha } +2\gamma ^{\alpha } +2\sigma _1^{\alpha } +d^{\alpha } ),(2akp_2 m^{\alpha } +2\beta _2^{\alpha } +2\mu ^{\alpha } +2b^{\alpha } u_2+d^{\alpha } +\delta ^{\alpha } ),(2\sigma _2^{\alpha } +d^{\alpha } ),(d^{\alpha } +2\rho ^{\alpha } )\}\). Therefore, we get \(||\Upsilon (X)-\Upsilon (X_1)||\le l||X-X_1||\), so \(\Upsilon \) satisfies the Lipschitz’s condition. Now lemma 3.1 implies that fractional-order system (3) has a unique solution \(X\in \Omega \) with respect to the starting condition \(X_{t_0}=(S_{t_0},E_{t_0},I_{t_0},Q_{t_0},R_{t_0})\in \Omega \). Hence the theorem.

Appendix B: Proof of Theorem 5.2

From Theorem 5.1, we see that the endemic equilibrium \(P_1\) exists when \(R_0>1\). Now, the Jacobian matrix of system (3) at the endemic equilibrium point \(P_1(S^*,E^*,I^*,Q^*,R^*)\) is as follows:

$$\begin{aligned} J(P_1)=\begin{pmatrix} -d^{\alpha }-\frac{m^{\alpha } I^*}{a+I^*}&{}0&{}\frac{m^{\alpha } S^* I^* }{(a+I^*)^2}-\frac{m^{\alpha } S^*}{a+I^*}&{}0&{}\rho ^{\alpha }\\ \frac{m^{\alpha } I^*}{a+I^*}&{}-(\beta _1^{\alpha }+\gamma ^{\alpha }+\sigma _1^{\alpha }+d^{\alpha })&{}-\frac{m^{\alpha } S^* I^* }{(a+I^*)^2}+\frac{m^{\alpha } S^*}{a+I^*}&{}0&{}0\\ 0&{}\gamma ^{\alpha }&{}-(\beta _2^{\alpha }+\mu ^{\alpha }+b^{\alpha } u_2+d^{\alpha }+\delta ^{\alpha })&{}0&{}0\\ 0&{}\beta _1^{\alpha }&{}\beta _2^{\alpha }&{}-(\sigma _2^{\alpha }+d^{\alpha })&{}0\\ 0&{}\sigma _1^{\alpha }&{}\mu ^{\alpha }+b^{\alpha } u_2&{}\sigma _2^{\alpha }&{}-(\rho ^{\alpha }+d^{\alpha }) \end{pmatrix} \end{aligned}$$

Then the characteristic equation is \(\lambda ^5+c_1\lambda ^4+c_2\lambda ^3+c_3\lambda ^2+c_4\lambda +c_5=0\) where \(c_i(i=1,2,3,4,5)\) are the coefficient of the characteristic equation, which can be obtained from \(det(J(P_1)-\lambda I)=0.\) It is clear that all \(c_i~(i=1,2,3,4,5)\) are positive. So, by Proposition 1 of Ref. [36], we can say that the endemic equilibrium \(P_1(S^*,E^*,I^*,Q^*,R^*)\) is locally asymptotically stable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majee, S., Jana, S., Kar, T.K. et al. Modeling and analysis of Caputo-type fractional-order SEIQR epidemic model. Int. J. Dynam. Control 12, 148–166 (2024). https://doi.org/10.1007/s40435-023-01348-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01348-6

Keywords