Abstract
In this study, the degree of the contribution of particular relaxation losses to the specific loss power are calculated for a number of magnetic fluids, including Fe3O4, CoFe2O4, MnFe2O4, FeCo, FePt and La0.7Sr0.3MnO3 nanoparticles in various viscosities. We found that the specific loss of every fluid studied increases linearly with particle saturation magnetization. The competition between Néel and Brownian relaxation contributions gives rise to a peak at a critical diameter in the plot of specific loss power versus diameter. The critical diameter does not change with saturation magnetization but monotonically decreases with increasing magnetic anisotropy. If particle diameter is smaller than 6–11 nm, the maximum loss power tends to diminish and the heating effect to switch off. According to how the materials respond to viscosity change, the hyperthermia materials can be classified into two groups. One is hard nanoparticles with high anisotropy of which the critical diameter decreases with viscosity and the specific loss power versus saturation magnetization rate decreases strongly. The other is soft nanoparticles with low anisotropy of which the properties are insensitive to the viscosity of the fluid. We discuss our simulated results in relation to recent experimental findings.
Similar content being viewed by others
References
A.H. Lu, A. Hui, E.L. Salabas, and F. Schuth, Angew. Chem. Int. Ed. 46, 1222 (2007).
N.T.K. Thanh, Magnetic Nanoparticles: From Fabrication to Clinical Applications (Boca Raton: CRC, 2012), pp. 215–242.
Q.A. Pankhurst, N.T.K. Thanh, S.K. Jones, and J. Dobson, J. Phys. D Appl. Phys. 42, 224001 (2009).
C.S.S.R. Kumar and F. Mohammad, Adv. Drug Deliv. Rev. 63, 789 (2011).
I. Hilger and W.A. Kaiser, Nanomedicine 7, 1443 (2012).
A.H. Habib, C.L. Ondeck, P. Chaudhary, M.R. Bockstaller, and M.E. McHenry, J. Appl. Phys. 103, 07A307 (2008).
L.M. Lacroix, J. Carey, and M. Respaud, Rev. Sci. Instrum. 79, 093909 (2008).
L.M. Lacroix, D. Ho, and S. Sun, Curr. Top. Med. Chem. 10, 1184 (2010).
R. Epherre, E. Duguet, S. Mornet, E. Pollert, S. Louguet, S. Lecommandoux, C. Schatzcd, and G. Goglio, J. Mater. Chem. 21, 4393 (2011).
D.H. Manh, P.H. Nam, N.V. Chien, P.T.B. Hoa, T.D. Lam, N.A. Tuan, P.Q. Thong, L.V. Hong, and N.X. Phuc, Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 035003 (2011).
J.H. Lee, J.T. Jang, J.S. Choi, S.H. Moon, S.H. Noh, J.W. Kim, J.G. Kim, I.S. Kim, K.I. Park, and J. Cheon, Nat. Nanotechnol. 6, 418 (2011).
S. Maenosono and S. Saita, IEEE Trans. Magn. 42, 1638 (2006).
R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, J. Phys.: Condens. Matter 18, S2919 (2006).
H.C. Thoeny, M. Triantafyllou, F.D. Kerkhaeuser, J.M. Froehlich, D.W. Tshering, T. Binser, A. Fleischmann, P. Vermathen, and U.E. Studer, Eur. Urol. 55, 761 (2009).
R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).
M. Jeun, Y.J. Kim, K.H. Park, S.H. Paek, and S. Bae, J. Nanosci. Nanotechnol. 13, 5719 (2013).
D.H. Manh, D.K. Tung, D.N.H. Nam, L.V. Hong, P.T. Phong, and N.X. Phuc, IEEE Trans. Magn. 50, 2005104 (2014).
A.E. Deatsch and B.A. Evans, J. Magn. Magn. Mater. 354, 163 (2014).
O.V. Yelenich, S.O. Solopan, T.V. Kolodiazhnyi, V.V. Dzyublyuk, A.I. Tovstolytkin, and A.G. Belous, Solid State Sci. 20, 115 (2013).
J.-P. Fortin, C. Wilhelm, J. Servais, C. Menager, J.-C. Bacri, and F. Gazeau, J. Am. Chem. Soc. 129, 2628 (2007).
S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, and V. Papaefthymiou, Phys. Rev. B 45, 9778 (1992).
M. Thakur, K. De, S. Giri, A. Kotal, and T.K. Mandal, J. Phys.: Condens. Matter 18, 9093 (2006).
D.H. Manh, P.T. Phong, T.D. Thanh, D.N.H. Nam, L.V. Hong, and N.X. Phuc, J. Alloys Compd. 509, 1373 (2011).
P.H. Linh, D.H. Manh, P.T. Phong, L.V. Hong, and N.X. Phuc, J. Supercond. Novel Magn. 27, 2111 (2014).
D.A. Garanin and H. Kachkachi, Phys. Rev. Lett. 90, 065504 (2003).
B.J. Hickey, M.A. Howson, D. Greig, and N. Wiser, Phys. Rev. B 53, 32 (1996).
N.M. Ha, D.H. Manh, L.V. Hong, N.X. Phuc, and Y.D. Yao, J. Korean Phys. Soc. 2, 1447 (2008).
S. Purushotham and R.V. Ramanujan, J. Appl. Phys. 107, 114701 (2010).
A. Candeo and F. Dughiero, IEEE Trans. Magn. 45, 1658 (2009).
L. Rast and J.G. Harrison, Piers 6, 990 (2010).
R.V. Stigliano, F. Shubitidze, A.A. Petryk, J.A. Tate, and P.J. Hoopes, Proc. SPIE 8584, 858410 (2013).
B. Mehdaoui, A. Meffre, and J. Carrey, Adv. Funct. Mater. 21, 4573 (2011).
C.A. Sawyer, A.H. Habib, K. Miller, K.N. Collier, C.L. Ondeck, and M.E. McHenry, J. Appl. Phys. 105, 07B320 (2009).
M. Pavel and A. Stancu, IEEE Trans. Magn. 45, 4825 (2009).
R.Z. Xu, H. Yu, and Y. Zhang, IEEE Trans. Magn. 45, 3085 (2009).
M. Salloum, R. Ma, and L. Zhu, Int. J. Hyperthermia 25, 309 (2009).
J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge: Cambridge University Press, 2010), pp. 386–423.
J.P. Fortin, F. Gazeau, C. Wilhelm, Eur. Biophys. J. 37, 223 (2008).
L. Néel, Ann. Geophys. 5, 99 (1949).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Luu Huu Nguyen and Nguyen Xuan Phuc contributed equally to this work.
Rights and permissions
About this article
Cite this article
Phong, P.T., Nguyen, L.H., Manh, .H. et al. Computer Simulations of Contributions of Néel and Brown Relaxation to Specific Loss Power of Magnetic Fluids in Hyperthermia. J. Electron. Mater. 46, 2393–2405 (2017). https://doi.org/10.1007/s11664-017-5302-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-017-5302-6