[go: up one dir, main page]

Skip to main content
Log in

A study of Brownian relaxation time in magnetic nanofluids: a semi-analytical model

  • Original Paper
  • Published:
Multiscale and Multidisciplinary Modeling, Experiments and Design Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Magnetic nanofluids find application in various fields, including magnetic hyperthermia, which holds significant potential for non-invasive cancer treatment. The dynamics of magnetic nanoparticle systems under the influence of a magnetic field plays a crucial role in all applications, particularly in magnetic hyperthermia, and has been the subject of recent intensive research. Numerous studies investigating magnetic hyperthermia assume that the Brownian relaxation time is independent of the magnetic field and nanoparticle concentration. However, this modeling assumption can introduce errors in estimating certain parameters of interest. Consequently, these errors propagate in determining the effective relaxation time, which holds great importance in estimating quantities such as the Specific Absorption Rate and Intrinsic Loss Power Values for magnetic hyperthermia. This scientific paper presents a study that addresses these errors using a semi-analytical model. The experimental results obtained in our study contribute to the understanding of magnetic relaxation mechanisms in nanofluids under various conditions. Furthermore, these findings can aid in the development of accurate numerical evaluation models for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abu-Bakr AF, Zubarev AY (2020a) Magnetic hyperthermia in a system of dense cluster of ferromagnetic nanoparticles. Eur Phys J Sp Top 229:315–322

    CAS  Google Scholar 

  • Abu-Bakr AF, Zubarev AY (2020b) A study of easy magnetization axes of ferro-nanoparticles on magnetic hyperthermia. AIP Conf Proc 2313(1):030034

    CAS  Google Scholar 

  • Abu-Bakr AF, Zubarev AY (2021) Effect of ring-shaped clusters on magnetic hyperthermia: modelling approach. Philos Trans R Soc A Math Phys Eng Sci 379:2205

    MathSciNet  Google Scholar 

  • Caizer C, Caizer IS (2021) Study on maximum specific loss power in Fe3O4 nanoparticles decorated with biocompatible gamma-cyclodextrins for cancer therapy with superparamagnetic hyperthermia. Int J Mol Sci 22(18):10071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Hou S (2022) Application of magnetic nanoparticles in cell therapy. Stem Cell Res Ther 13:135

    PubMed  PubMed Central  Google Scholar 

  • Coene A, Leliaert J (2022) Magnetic nanoparticles in theranostic applications. J Appl Phys 131:160902

    ADS  CAS  Google Scholar 

  • Coffey WT, Kalmykov YP (2012) Thermal fluctuations of magnetic nanoparticles: fifty years after Brown. J Appl Phys 112:121301

    ADS  Google Scholar 

  • Coffey WT, Gregg PJ, Kalmykov YP (1992) On the theory of Debye and Nèel relaxation of single domain ferromagnetic particles. Adv Chem Phys 83:263–464

    Google Scholar 

  • Deissler RJ, Wu Y, Martens MA (2014) Dependence of Brownian and Néel relaxation times on magnetic field strength. Med Phys 41(1):012301

    PubMed  Google Scholar 

  • Dieckhoff J, Schilling M, Ludwig F (2011) Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field. Appl Phys Lett 99(11):112501

    ADS  Google Scholar 

  • Dieckhoff J, Eberbeck D, Schilling M, Ludwig F (2016) Magnetic-field dependence of Brownian and Néel relaxation times. J Appl Phys 119:043903

    ADS  Google Scholar 

  • Flores-Rojas GG, López-Saucedo F, Vera-Graziano R, Mendizabal E, Bucio E (2022) Magnetic nanoparticles for medical applications: updated review. Macromol 2:374–390

    CAS  Google Scholar 

  • Goodwill PW, Tamrazian A, Croft LR, Lu CD, Johnson EM, Pidaparthi R, Ferguson RM, Khandhar AP, Krishnan KM, Conolly SM (2011) Ferrohydrodynamic relaxometry for magnetic particle imaging. Appl Phys Lett 98(26):262502

    ADS  Google Scholar 

  • Ilg P, Kröger M (2020) Dynamics of interacting magnetic nanoparticles: effective behaviour from competition between Brownian and Néel relaxation. Phys Chem Chem Phys 22:22244–22259

    CAS  PubMed  Google Scholar 

  • Krafcik A, Babinec P, Strbak O, Frollo IA (2021) Theoretical analysis of magnetic particle alignment in external magnetic fields affected by viscosity and Brownian motion. Appl Sci 11:9651

    Google Scholar 

  • Kumar A, Subudhi S (2018) Preparation, characteristics, convection and applications of magnetic nanofluids: a review. Heat Mass Transf 54:241–265

    ADS  Google Scholar 

  • Materón EM, Miyazaki CM, Carr O, Joshi N, Picciani PHS, Dalmaschio CJ, Davis F, Shimizu FM (2021) Magnetic nanoparticles in biomedical applications: a review. Appl Surf Sci Adv 6:100163

    Google Scholar 

  • Mittal A, Roy I, Gandhi S (2022) Magnetic nanoparticles: an overview for biomedical applications. Magnetochemistry 8:107

    CAS  Google Scholar 

  • Moita A, Moreira A, Pereira J (2021) Nanofluids for the next generation thermal management of electronics: a review. Symmetry 13(2021):1362–1388

    ADS  CAS  Google Scholar 

  • Morales I, Costo R, Mille N, Carrey J, de la Presa AH, de la Presa P (2021) Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field. Nanoscale Adv 3:5801–5812

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Naushad Alam Md, Langde A (2022) A review of application of nanofluid. J East China Univ Sci Technol 65(4):173–180

    Google Scholar 

  • Neveu-Prin S, Tourinho FA, Bacri JC, Perzynski R (1993) Magnetic birefringence of cobalt ferrite ferrofluids. Colloids Surf A 80(1):1–10

    CAS  Google Scholar 

  • Noguchi S, Trisnanto S, Yamada T, Ota S, Takemura Y (2022) AC magnetic susceptibility of magnetic nanoparticles measured under DC bias magnetic field. J Magn Soc Jpn 46:42–48

    CAS  Google Scholar 

  • Osaci M, Cacciola M (2015) An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles. Beilstein J Nanotechnol 6(1):2173–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osaci M, Cacciola M (2017) Study about the nanoparticle agglomeration in a magnetic nanofluid by the Langevin dynamics simulation model using an effective Verlet-type algorithm. Microfluid Nanofluid 21(2):1–14

    CAS  Google Scholar 

  • Osaci M, Cacciola M (2019) The influence of the magnetic nanoparticles coating from colloidal system on the magnetic relaxation time. Beilstein Arch 12(6):1–18

    Google Scholar 

  • Osaci M, Cacciola M (2020) Influence of the magnetic nanoparticle coating on the magnetic relaxation time. Beilstein J Nanotechnol 11(1):1207–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osaci M, Cacciola M (2021) About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia. J Magn Magn Mater 519:16745

    Google Scholar 

  • Ota S, Takemura Y (2019) Characterization of neel and Brownian relaxations isolated from complex dynamics influenced by dipole interactions in magnetic nanoparticles. J Phys Chem C 123:28859–28866

    CAS  Google Scholar 

  • Ota S, Takemura Y (2020) Individual observation of Néel and Brownian relaxations in magnetic nanoparticles. Int J Magn Part Imaging 6(2 Suppl 1):2009005

    Google Scholar 

  • Ota S, Yamada T, Takemura Y (2015) Dipole-dipole interactions and its concentration dependence of magnetic fluid evaluated by aloternatting current hysteresis measurement. J Appl Phys 117:17D713

    Google Scholar 

  • Ota S, Kitaguchi R, Takeda R, Yamada T, Takemura Y (2016) Rotation of magnetization derived from Brownian relaxation in magnetic fluids of different viscosity evaluated by dynamic hysteresis measurements over a wide frequency range. Nanomaterials 6:170

    PubMed  PubMed Central  Google Scholar 

  • Rauwerdink AM, Weaver JB (2010) Harmonic phase angle as a concentration independent measure of nanoparticle dynamics. Med Phys 37(6):2587

    PubMed  PubMed Central  Google Scholar 

  • Rietberg MT, Waanders S, Horstman-van de Loosdrecht MM, Wildeboer RR, ten Haken B, Alic L (2021) Modelling of dynamic behaviour in magnetic nanoparticles. Nanomaterials 11:3396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Sadat MD, Bud’ko SL, Ewing RC, Xu H, Pauletti GM, Mast DB, Shi D (2023) Effect of dipole interactions on blocking temperature and relaxation dynamics of superparamagnetic iron-oxide (Fe3O4) nanoparticle systems. Materials 16:496

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindt OJ, Camp PJ, Kantorovich SS, Elfimova EA, Ivanov AO (2016) Influence of dipolar interactions on the magnetic susceptibility spectra of ferrofluids. Phys Rev E 93:063117

    ADS  PubMed  Google Scholar 

  • Tackett R, Thakur J, Mosher N, Perkins-Harbin E, Kumon RE, Wang L, Rablau C, Vaishnava P (2015) A method for measuring the Neel relaxation time in a frozen ferrofluid. J Appl Phys 118(6):064701

    ADS  Google Scholar 

  • Torres TE, Lima E Jr, Calatayud MP, Sanz B, Ibarra A, Fernández-Pacheco R, Mayoral A, Marquina C, Ibarra MR, Goya GF (2019) The relevance of Brownian relaxation as power absorption mechanism in magnetic hyperthermia. Sci Rep 9:3992

    ADS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Holm C (2001) Estimate of the cutoff errors in the Ewald summation for dipolar systems. J Chem Phys 115:6351

    ADS  CAS  Google Scholar 

  • Yelenich O, Solopan S, Kolodiazhnyi T, Tykhonenko Y, Tovstolytkin A, Belous AJ (2015) Magnetic properties and AC losses in AFe2O4 (A = Mn Co, Ni, Zn) nanoparticles synthesized from nonaqueous solution. J Chem 3:1–9

    Google Scholar 

  • Yoshida T, Enpuku K (2009) Simulation and quantitative clarification of AC susceptibility of magnetic fluid in nonlinear Brownian relaxation region. Jpn J Appl Phys 48(12):127002

    ADS  Google Scholar 

  • Zhong J, Lucht N, Hankiewicz B, Schilling M, Ludwig F (2019) Magnetic field orientation dependent dynamic susceptibility and Brownian relaxation time of magnetic nanoparticles. Appl Phys Lett 115:133102

    ADS  Google Scholar 

  • Zubarev AY, Iskakova L, Abu-Bakr AF (2015) Effect of interparticle interaction on magnetic hyperthermia in ferrofluids. Phys A 438:487–492

    MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors collaborated on establishing the methodology for the semi-analytical model and reviewed the manuscript. Mihaela Osaci played a key role in refining the model, conducting simulations, creating figures, and drafting the initial version of the paper. Matteo Cacciola contributed to the project by implementing the semi-analytical model, conducting bibliographic research, verifying the accuracy of the content, evaluating the presentation methods, and formatting the final version of the paper.

Corresponding author

Correspondence to Mihaela Osaci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osaci, M., Cacciola, M. A study of Brownian relaxation time in magnetic nanofluids: a semi-analytical model. Multiscale and Multidiscip. Model. Exp. and Des. 7, 15–29 (2024). https://doi.org/10.1007/s41939-023-00174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41939-023-00174-9

Keywords