[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Evaluation of an ankle–foot orthosis effect on gait transitional stability during ramp ascent/descent

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Wearable ankle–foot orthoses (AFO) are widely prescribed clinically; however, their effect on balance control during ramp ascent/descent walk remains unknown. This study evaluates walking stability on a ramp during weight loading and unloading transitions of the stance phase with the effect of an adjustable AFO. An AFO is tuned firstly by tuning dorsiflexion only and then combining dorsi-plantarflexion adjustments. Gait stability is assessed from neuromotor input (centre-of-mass) and output (centre-of-pressure) responses obtained through motion-capture system and force platform. Stability margins are quantified from Nyquist and Bode methods illustrating the loading phase as stable and the unloading phase as unstable transition in all walking conditions. Further, a significant decrease in stability (p < 0.05) is observed by wearing AFO in its free mode which gets improved (p < 0.05) by tuning AFO. Results from neuromotor outputs also illustrated a strong interlimb correlation (p < 0.001), which implies a compensatory interaction between opposite limbs loading and unloading transitions. Neuromotor inputs illustrated unstable responses both in loading and unloading transitions and were observed to be greater in magnitudes compared with output margins. The overall results support the hypothesis that a wearable AFO affects gait stability during transitional phases, and by applying AFO adjustments, neuromotor balance control achieves stability margins closer to normal range.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A/D:

Ascent or descent

AFO:

Ankle–foot orthosis

CoM:

Centre of mass

CoP:

Centre of pressure

DRT:

Dorsiflexion resistive torque

DPRT:

Dorsi-plantarflexion resistive torque

DRR:

Dorsiflexion ROM restriction

DPRR:

Dorsi-plantarflexion ROM restriction

GM:

Gain margin

GRF:

Ground reaction force

HC:

Heel contact

I&O:

Input and output

I/P:

Input

I&O:

Input and output

LTI:

Linear time-invariant

MoS:

Margin of stability

O/P:

Output

PCA:

Principal component analysis

PM:

Phase margin

R 2 :

Coefficient of determinant

RMS:

Root mean square

ROM:

Range of motion

Std.:

Standard deviation

TF:

Transfer function

TO:

Toe-off

References

  1. Vieira MF, de Brito AA, Lehnen GC, Rodrigues FB (2017) Center of pressure and center of mass behavior during gait initiation on inclined surfaces: a statistical parametric mapping analysis. J Biomech 56:10–18

    Article  PubMed  Google Scholar 

  2. da Costa BR, Vieira MF (2017) Postural control of elderly adults on inclined surfaces. Ann Biomed Eng 45:726–738

    Article  Google Scholar 

  3. Vieira MF, Rodrigues FB, de Sá e Souza GS, Magnani RM, Lehnen GC, Andrade AO (2017) Linear and nonlinear gait features in older adults walking on inclined surfaces at different speeds. Ann Biomed Eng 45:1560–1571

    Article  PubMed  Google Scholar 

  4. Strutzenberger G, Leutgeb L, Claußen L, Schwameder H (2022) Gait on slopes: differences in temporo-spatial, kinematic and kinetic gait parameters between walking on a ramp and on a treadmill. Gait Posture 91:73–78

    Article  PubMed  Google Scholar 

  5. Camargo J, Ramanathan A, Flanagan W, Young A (2021) A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions. J Biomech 119:110320

    Article  PubMed  Google Scholar 

  6. Lee D, Kwak EC, McLain BJ, Kang I, Young AJ (2020) Effects of assistance during early stance phase using a robotic knee orthosis on energetics, muscle activity, and joint mechanics during incline and decline walking. IEEE Trans Neural Syst Rehab Eng 28:914–923

    Article  Google Scholar 

  7. McLain BJ, Lee D, Mulrine SC, Young AJ (2022) Effect of assistance using a bilateral robotic knee exoskeleton on tibiofemoral force using a neuromuscular model. Ann Biomed Eng 50:716–727

  8. Tyson SF, Kent RM (2013) Effects of an ankle-foot orthosis on balance and walking after stroke: a systematic review and pooled meta-analysis. Arch Phys Med Rehabil 94:1377–1385

    Article  PubMed  Google Scholar 

  9. Guerra Padilla M, Molina Rueda F, Alguacil Diego IM (2014) Effect of ankle-foot orthosis on postural control after stroke: a systematic review. Neurología (English Edition) 29:423–432

    Article  CAS  Google Scholar 

  10. Totah D, Menon M, Jones-Hershinow C, Barton K, Gates DH (2019) The impact of ankle-foot orthosis stiffness on gait: a systematic literature review. Gait Posture 69:101–111

    Article  PubMed  Google Scholar 

  11. Vieira MF, Rodrigues FB, de Sá e Souza GS, Magnani RM, Lehnen GC, Campos NG, Andrade AO (2017) Gait stability, variability and complexity on inclined surfaces. J Biomech 54:73–79

    Article  PubMed  Google Scholar 

  12. Desrosiers É, Nadeau S, Duclos C (2015) Balance during walking on an inclined instrumented pathway following incomplete spinal cord injury. Spinal Cord 53:387–394

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigues FB, Andrade AO, Vieira MF (2019) Effects of inclined surfaces on gait variability and stability in unilateral lower limb amputees. Med Biol Eng Comput 57:2337–2346

    Article  PubMed  Google Scholar 

  14. Rodrigues FB, de Sá e Souza GS, de MendonçaMesquita E, de Sousa Gomide R, Baptista RR, Pereira AA, Andrade AO, Vieira MF (2021) Margins of stability of persons with transtibial or transfemoral amputations walking on sloped surfaces. J Biomech 123:110453

    Article  PubMed  Google Scholar 

  15. Dewolf AH, Mesquita RM, Willems PA (2020) Intra-limb and muscular coordination during walking on slopes. Eur J Appl Physiol 120:1841–1854

    Article  PubMed  Google Scholar 

  16. Mahmood I, Martinez-Hernandez U, Dehghani-Sanij AA (2020) Evaluation of gait transitional phases using neuromechanical outputs and somatosensory inputs in an overground walk. Hum Mov Sci 69:102558

    Article  PubMed  Google Scholar 

  17. Mahmood I, Martinez-Hernandez U, Dehghani-Sanij AA (2020) A model identification approach to quantify impact of whole-body vertical vibrations on limb compliant dynamics and walking stability. Med Eng Phys 80:8–17

    Article  PubMed  Google Scholar 

  18. Mahmood I, Raza A, Dehghani-Sanij AA (2021) Evaluation of an adjustable ankle-foot orthosis impact on walking stability during gait transitional phases. Med Eng Phys 100:103720

  19. La Scaleia V, Ivanenko YP, Zelik KE, Lacquaniti F (2014) Spinal motor outputs during step-to-step transitions of diverse human gaits. Front Hum Neurosci 8:305

    PubMed  PubMed Central  Google Scholar 

  20. Kirtley C (2006) Chapter 9 - gravity and centre of mass. In: Kirtley C (ed) Clinical Gait Analysis. Churchill Livingstone, Edinburgh, pp 157–173

    Chapter  Google Scholar 

  21. Rabuffetti M, Bovi G, Quadri PL, Cattaneo D, Benvenuti F, Ferrarin M (2011) An experimental paradigm to assess postural stabilization: no more movement and not yet posture. IEEE Trans Neural Syst Rehab Eng 19:420–426

    Article  Google Scholar 

  22. Winter DA (2009) Biomechanics and motor control of human movement. John Wiley & Sons

    Book  Google Scholar 

  23. Lugade V, Kaufman K (2014) Center of pressure trajectory during gait: a comparison of four foot positions. Gait Posture 40:719–722

    Article  PubMed  Google Scholar 

  24. Lugade V, Kaufman K (2014) Dynamic stability margin using a marker based system and Tekscan: A comparison of four gait conditions. Gait Posture 40:252–254

    Article  PubMed  Google Scholar 

  25. Lugade V, Lin V, Chou L-S (2011) Center of mass and base of support interaction during gait. Gait Posture 33:406–411

    Article  PubMed  Google Scholar 

  26. Bruijn S, Meijer O, Beek P, Van Dieën J (2013) Assessing the stability of human locomotion: a review of current measures. J R Soc Interface 10:20120999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simon AL, Ilharreborde B, Souchet P, Kaufman KR (2015) Dynamic balance assessment during gait in spinal pathologies - a literature review. Orthop Traumatol Surg Res 101:235–246

    Article  CAS  PubMed  Google Scholar 

  28. Worden TA, Beaudette SM, Brown SHM, Vallis LA (2016) Estimating gait stability: asymmetrical loading effects measured using margin of stability and local dynamic stability. J Mot Behav 48:455–467

    Article  PubMed  Google Scholar 

  29. Neptune R,Vistamehr A (2018) Dynamic balance during human movement: measurement and control mechanisms. J Biomech Eng 141(7):070801

  30. Morgan KD, Zheng Y, Bush H, Noehren B (2016) Nyquist and Bode stability criteria to assess changes in dynamic knee stability in healthy and anterior cruciate ligament reconstructed individuals during walking. J Biomech 49:1686–1691

    Article  PubMed  Google Scholar 

  31. Choi H, Peters KM, MacConnell MB, Ly KK, Eckert ES, Steele KM (2017) Impact of ankle foot orthosis stiffness on Achilles tendon and gastrocnemius function during unimpaired gait. J Biomech 64:145–152

    Article  PubMed  Google Scholar 

  32. Don R, Serrao M, Vinci P, Ranavolo A, Cacchio A, Ioppolo F, Paoloni M, Procaccianti R, Frascarelli F, De Santis F, Pierelli F, Frascarelli M, Santilli V (2007) Foot drop and plantar flexion failure determine different gait strategies in Charcot-Marie-Tooth patients. Clin Biomech 22:905–916

    Article  Google Scholar 

  33. Rábago CA, Aldridge Whitehead J, Wilken JM (2016) Evaluation of a powered ankle-foot prosthesis during slope ascent gait. PLoS ONE 11:e0166815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Luo H, Wang X, Fan M, Deng L, Jian C, Wei M,Luo J (2018) The effect of visual stimuli on stability and complexity of postural control. Front Neurol 9:48

  35. Shin S, Motl RW, Sosnoff JJ (2011) A test of the rambling and trembling hypothesis: multiple sclerosis and postural control. Mot Control 15:568–579

    Article  Google Scholar 

  36. Iosa M, Gizzi L, Tamburella F, Dominici N (2015) Editorial: neuro-motor control and feed-forward models of locomotion in humans. Front Human Neurosci 9:306

  37. Allen JL, Ting LH (2016) Why is neuromechanical modeling of balance and locomotion so hard? In: Prilutsky BI, Edwards DH (eds) Neuromechanical modeling of posture and locomotion. Springer, New York, New York, NY, pp 197–223

    Chapter  Google Scholar 

  38. Blum KP, Lamotte D’Incamps B, Zytnicki D, Ting LH (2017) Force encoding in muscle spindles during stretch of passive muscle. PLoS Comp Biol 13:e1005767

    Article  CAS  Google Scholar 

  39. Bizovska L, Svoboda Z, Kutilek P, Janura M, Gaba A, Kovacikova Z (2014) Variability of centre of pressure movement during gait in young and middle-aged women. Gait Posture 40:399–402

    Article  PubMed  Google Scholar 

  40. Carbonneau E, Fontaine R, Smeesters C (2013) A practical approach to determine appropriate cutoff frequencies for motion analysis data, in 37th Annual Meeting of the American Society of Biomechanics, Omaha

  41. Cuisinier R, Olivier I, Vaugoyeau M, Nougier V, Assaiante C (2011) Reweighting of sensory inputs to control quiet standing in children from 7 to 11 and in adults. PLoS ONE 6:e19697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van der Linden MH, van der Linden SC, Hendricks HT, van Engelen BGM, Geurts ACH (2010) Postural instability in Charcot-Marie-Tooth type 1A patients is strongly associated with reduced somatosensation. Gait Posture 31:483–488

    Article  PubMed  Google Scholar 

  43. Anderson SR, Porrill J, Sklavos S, Gandhi NJ, Sparks DL, Dean P (2009) Dynamics of primate oculomotor plant revealed by effects of abducens microstimulation. J Neurophysiol 101:2907–2923

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sklavos S, Porrill J, Kaneko CRS, Dean P (2005) Evidence for wide range of time scales in oculomotor plant dynamics: implications for models of eye-movement control. Vision Res 45:1525–1542

    Article  PubMed  PubMed Central  Google Scholar 

  45. Robbins SM, Astephen Wilson JL, Rutherford DJ, Hubley-Kozey CL (2013) Reliability of principal components and discrete parameters of knee angle and moment gait waveforms in individuals with moderate knee osteoarthritis. Gait Posture 38:421–427

    Article  PubMed  Google Scholar 

  46. Toosi YB (2015) A note on the gain and phase margin concepts. J Control Syst Eng 3:51–59

    Article  Google Scholar 

  47. Cattaneo D, Rabuffetti M, Bovi G, Mevio E, Jonsdottir J, Ferrarin M (2014) Assessment of postural stabilization in three task oriented movements in people with multiple sclerosis. Disabil Rehabil 36:2237–2243

    Article  PubMed  Google Scholar 

  48. Park GY, Yeo SS, Kwon YC, Song HS, Lim YJ, Ha YM, Han SH, Oh S (2020) Changes in gait parameters and gait variability in young adults during a cognitive task while slope and flat walking. Healthcare (Basel, Switzerland) 8:30

    Google Scholar 

  49. Kim H, Park J, Cha J, Song C-H (2014) Influence of mobile phone texting on gait parameters during ramp ascent and descent. Physical Therapy Rehabilitation Science 3(1):43–48

    Article  Google Scholar 

  50. Ploeger HE, Waterval NFJ, Nollet F, Bus SA, Brehm M-A (2019) Stiffness modification of two ankle-foot orthosis types to optimize gait in individuals with non-spastic calf muscle weakness – a proof-of-concept study. J Foot Ankle Res 12:41

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dingwell JB, Marin LC (2006) Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J Biomech 39:444–452

    Article  PubMed  Google Scholar 

  52. Bekkers EMJ, Dockx K, Heremans E, Vercruysse S, Verschueren SMP, Mirelman A, Nieuwboer A (2014) The contribution of proprioceptive information to postural control in elderly and patients with Parkinson’s disease with a history of falls. Front Hum Neurosci 8:939–939

    Article  PubMed  PubMed Central  Google Scholar 

  53. Emmens AR, van Asseldonk EHF, van der Kooij H (2018) Effects of a powered ankle-foot orthosis on perturbed standing balance. J Neuroeng Rehabil 15:50

    Article  PubMed  PubMed Central  Google Scholar 

  54. Merry KJ, Macdonald E, MacPherson M, Aziz O, Park E, Ryan M, Sparrey CJ (2021) Classifying sitting, standing, and walking using plantar force data. Med Biol Eng Comput 59:257–270

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The corresponding author would like to thank his PhD scholarship sponsor, the University of Engineering and Technology, Lahore, Pakistan. The authors would like to thank all the participants and lab staff at the University of Leeds, Leeds, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Mahmood.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 802 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, I., Raza, A., Maqbool, H.F. et al. Evaluation of an ankle–foot orthosis effect on gait transitional stability during ramp ascent/descent. Med Biol Eng Comput 60, 2119–2132 (2022). https://doi.org/10.1007/s11517-022-02587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02587-z

Keywords