Abstract
Cognitive diagnosis is an important issue of intelligent education systems, which aims to estimate students’ proficiency on specific knowledge concepts. Most existing studies rely on the assumption of static student states and ignore the dynamics of proficiency in the learning process, which makes them unsuitable for online learning scenarios. In this paper, we propose a unified temporal item response theory (UTIRT) framework, incorporating temporality and randomness of proficiency evolving to get both accurate and interpretable diagnosis results. Specifically, we hypothesize that students’ proficiency varies as a Wiener process and describe a probabilistic graphical model in UTIRT to consider temporality and randomness factors. Furthermore, based on the relationship between student states and exercising answers, we hypothesize that the answering result at time k contributes most to inferring a student's proficiency at time k, which also reflects the temporality aspect and enables us to get analytical maximization (M-step) in the expectation maximization (EM) algorithm when estimating model parameters. Our UTIRT is a framework containing unified training and inferencing methods, and is general to cover several typical traditional models such as Item Response Theory (IRT), multidimensional IRT (MIRT), and temporal IRT (TIRT). Extensive experimental results on real-world datasets show the effectiveness of UTIRT and prove its superiority in leveraging temporality theoretically and practically over TIRT.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Guo X, Li R, Yu Q, Haake A R. Modeling physicians’ utterances to explore diagnostic decision-making. In Proc. the 26th International Joint Conference on Artificial Intelligence, Aug. 2017, pp.3700–3706. DOI: 10.24963/ijcai.2017/517.
Yao C L, Qu Y, Jin B, Guo L, Li C, Cui W J, Feng L. A convolutional neural network model for online medical guidance. IEEE Access, 2016, 4: 4094–4103. DOI: https://doi.org/10.1109/ACCESS.2016.2594839.
Chen S, Joachims T. Predicting matchups and preferences in context. In Proc. the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2016, pp.775–784. DOI: 10.1145/2939672.2939764.
Wang F, Liu Q, Chen E H, Huang Z Y, Chen Y Y, Yin Y, Huang Z, Wang S J. Neural cognitive diagnosis for intelligent education systems. In Proc. the 34th AAAI Conference on Artificial Intelligence, Feb. 2020, pp.6153–6161. DOI: 10.1609/aaai.v34i04.6080.
Kuh G D, Kinzie J, Buckley J, Bridges B K, Hayek J. Piecing together the student success puzzle: Research, propositions, and recommendations. ASHE Higher Education Report, 2007, 32(5): 1–182. DOI: https://doi.org/10.1002/aehe.3205.
de la Torre J. Dina model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 2009, 34(1): 115–130. DOI: https://doi.org/10.3102/1076998607309474.
Embretson S E, Reise S P. Item Response Theory. Psychology Press, 2013.
Adams R J, Wilson M, Wang W C. The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 1997, 21(1): 1–23. DOI: https://doi.org/10.1177/0146621697211001.
Wilson K H, Karklin Y, Han B J, Ekanadham C. Back to the basics: Bayesian extensions of IRT outperform neural networks for proficiency estimation. arXiv: 1604.02336, 2016. https://arxiv.org/abs/1604.02336, Nov. 2023.
Tatsuoka K K, Tatsuoka M M. Computerized cognitive diagnostic adaptive testing: Effect on remedial instruction as empirical validation. Journal of Educational Measurement, 1997, 34(1): 3–20. DOI: https://doi.org/10.1111/j.1745-3984.1997.tb00504.x.
Leighton J P, Gierl M J, Hunka S M. The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 2004, 41(3): 205–237. DOI: https://doi.org/10.1111/j.1745-3984.2004.tb01163.x.
Thai-Nghe N, Horváth T, Schmidt-Thieme L. Factorization models for forecasting student performance. In Proc. the 3rd International Conference on Educational Data Mining, June 2010, pp.11–20.
Wang X J, Berger J O, Burdick D S. Bayesian analysis of dynamic item response models in educational testing. The Annals of Applied Statistics, 2013, 7(1): 126–153. DOI: https://doi.org/10.1214/12-AOAS608.
Anzanello M J, Fogliatto F S. Learning curve models and applications: Literature review and research directions. International Journal of Industrial Ergonomics, 2011, 41(5): 573–583. DOI: https://doi.org/10.1016/j.ergon.2011.05.001.
Averell L, Heathcote A. The form of the forgetting curve and the fate of memories. Journal of Mathematical Psychology, 2011, 55(1): 25–35. DOI: https://doi.org/10.1016/j.jmp.2010.08.009.
Ebbinghaus H. Memory: A contribution to experimental psychology. Annals of Neurosciences, 2013, 20(4): 155–156. DOI: https://doi.org/10.5214/ans.0972.7531.200408.
Malliaris A G. Wiener process. In Time Series and Statistics, Eatwell J, Milgate M, Newman P (eds.), Springer, 1990, pp.316–318. DOI: https://doi.org/10.1007/978-1-349-20865-4_43.
Liu B B, Dong W, Liu J X, Zhang Y T, Wang D Y. ProSy: API-based synthesis with probabilistic model. Journal of Computer Science and Technology, 2020, 35(6): 1234–1257. DOI: https://doi.org/10.1007/s11390-020-0520-4.
Qiang Y T, Fu Y W, Yu X, Guo Y W, Zhou Z H, Sigal L. Learning to generate posters of scientific papers by probabilistic graphical models. Journal of Computer Science and Technology, 2019, 34(1): 155–169. DOI: https://doi.org/10.1007/s11390-019-1904-1.
Zhang Q. Dynamic uncertain causality graph for knowledge representation and reasoning: Discrete dag cases. Journal of Computer Science and Technology, 2012, 27(1): 1–23. DOI: https://doi.org/10.1007/s11390-012-1202-7.
Leighton J P, Gierl M J. Cognitive Diagnostic Assessment for Education: Theory and Applications. Cambridge University Press, 2007.
Rasch G. Probabilistic Models for Some Intelligence and Attainment Tests. MESA Press, 1993.
Khajah M, Wing R M, Lindsey R V, Mozer M C. Integrating latent-factor and knowledge-tracing models to predict individual differences in learning. In Proc. the 7th International Conference on Educational Data Mining, Jul. 2014, pp.99–106.
Ekanadham C, Karklin Y. T-SKIRT: Online estimation of student proficiency in an adaptive learning system. arXiv: 1702.04282, 2017. https://arxiv.org/abs/1702.04282, Nov. 2023.
Huang Z Y, Liu Q, Chen Y Y et al. Learning or forgetting? A dynamic approach for tracking the knowledge proficiency of students. ACM Trans. Information Systems, 2020, 38(2): 1–33. DOI: https://doi.org/10.1145/3379507.
Cen H, Koedinger K, Junker B. Learning factors analysis—A general method for cognitive model evaluation and improvement. In Proc. the 8th International Conference on Intelligent Tutoring Systems, Jun. 2006, pp.164–175. DOI: 10.1007/11774303_17.
Pavlik P I, Cen H, Koedinger K R. Performance factors analysis—A new alternative to knowledge tracing. In Proc. the 14th International Conference on Artificial Intelligence in Education, Jul. 2009. DOI: 10.3233/978-1-60750-028-5-531.
Elo A E. The Rating of Chess Players, Past and Present. Arco Pub, 1978.
Pelánek R. Application of time decay functions and the elo system in student modeling. In Proc. the 7th International Conference on Educational Data Mining, Jul. 2014, pp.21–27.
Nižnan J, Pelánek R, Rihák J. Student models for prior knowledge estimation. In Proc. the 8th International Conference on Educational Data Mining, Jun. 2015, pp.109–116.
Pelánek R, Papoušek J, Řihák J, Stanislav V, Nižnan J. Elo-based learner modeling for the adaptive practice of facts. User Modeling and User-Adapted Interaction, 2017, 27(1): 89–118. DOI: https://doi.org/10.1007/s11257-016-9185-7.
Yudelson M. Individualization of Bayesian knowledge tracing through Elo-infusion. In Proc. the 22nd International Conference on Artificial Intelligence in Education, Jun. 2021, pp.412–416. DOI: 10.1007/978-3-030-78270-2_73.
Kaya Y, Leite W L. Assessing change in latent skills across time with longitudinal cognitive diagnosis modeling: An evaluation of model performance. Educational and Psychological Measurement, 2017, 77(3): 369–388. DOI: https://doi.org/10.1177/0013164416659314.
Zhan P D, Jiao H, Liao D D, Li F M. A longitudinal higher-order diagnostic classification model. Journal of Educational and Behavioral Statistics, 2019, 44(3): 251–281. DOI: https://doi.org/10.3102/1076998619827593.
Pan Q Q, Qin L, Kingston N. Growth modeling in a diagnostic classification model (DCM) framework—A multivariate longitudinal diagnostic classification model. Frontiers in Psychology, 2020, 11: 1714. DOI: https://doi.org/10.3389/fpsyg.2020.01714.
Zhan P D, He K R. A longitudinal diagnostic model with hierarchical learning trajectories. Educational Measurement: Issues and Practice, 2021, 40(3): 18–30. DOI: https://doi.org/10.1111/emip.12422.
Zhan P D. Longitudinal learning diagnosis: Minireview and future research directions. Frontiers in Psychology, 2020, 11: 1185. DOI: https://doi.org/10.3389/fpsyg.2020.01185.
Corbett A T, Anderson J R. Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 1994, 4(4): 253–278. DOI: https://doi.org/10.1007/BF01099821.
González-Brenes J, Huang Y, Brusilovsky P. General features in knowledge tracing to model multiple subskills, temporal item response theory, and expert knowledge. In Proc. the 7th International Conference on Educational Data Mining, Jul. 2014, pp.84–91.
Käser T, Klingler S, Schwing A G, Gross M. Dynamic Bayesian networks for student modeling. IEEE Trans. Learning Technologies, 2017, 10(4): 450–462. DOI: https://doi.org/10.1109/TLT.2017.2689017.
Pardos Z A, Heffernan N T. KT-IDEM: Introducing item difficulty to the knowledge tracing model. In Proc. the 19th International Conference on User Modeling, Adaptation, and Personalization, Jul. 2011, pp.243–254. DOI: 10.1007/978-3-642-22362-4_21.
Thaker K, Huang Y, Brusilovsky P, He D Q. Dynamic knowledge modeling with heterogeneous activities for adaptive textbooks. In Proc. the 11th International Conference on Educational Data Mining, Jul. 2018, pp.592–595.
Yudelson M V, Koedinger K R, Gordon G J. Individualized Bayesian knowledge tracing models. In Proc. the 16th International Conference on Artificial Intelligence in Education, Jul. 2013, pp.171–180. DOI: 10.1007/978-3-642-39112-5_18.
Liu Q, Huang Z Y, Yin Y, Chen E H, Xiong H, Su Y, Hu G P. EKT: Exercise-aware knowledge tracing for student performance prediction. IEEE Trans. Knowledge and Data Engineering, 2019, 33(1): 100–115. DOI: https://doi.org/10.1109/TKDE.2019.2924374.
Pardos Z A, Heffernan N T. Modeling individualization in a Bayesian networks implementation of knowledge tracing. In Proc. the 18th International conference on User Modeling, Adaptation, and Personalization, Jun. 2010, pp.255–266. DOI: 10.1007/978-3-642-13470-8_24.
Pardos Z A, Heffernan N T. Using HMMs and bagged decision trees to leverage rich features of user and skill from an intelligent tutoring system dataset. Journal of Machine Learning Research W&CP, 201040. https://people.csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf, Nov. 2023.
Piech C, Spencer J, Huang J, Ganguli S, Sahami M, Guibas L, Sohl-Dickstein J. Deep knowledge tracing. arXiv: 1506.05908, 2015. https://arxiv.org/abs/1506.05908, Nov. 2023.
Zhang J N, Shi X J, King I, Yeung D Y. Dynamic keyvalue memory networks for knowledge tracing. In Proc. the 26th International Conference on World Wide Web, Apr. 2017, pp.765–774. DOI: 10.1145/3038912.3052580.
Shen S H, Liu Q, Chen E H, Huang Z Y, Huang W, Yin Y, Su Y, Wang S J. Learning process-consistent knowledge tracing. In Proc. the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Aug. 2021, pp.1452–1460. DOI: 10.1145/3447548.3467237.
Huang T, Yang H L, Li Z, Xie H K, Geng J, Zhang H. A dynamic knowledge diagnosis approach integrating cognitive features. IEEE Access, 2021, 9: 116814–116829. DOI: https://doi.org/10.1109/ACCESS.2021.3105830.
Lu Y, Wang D L, Meng Q G, Chen P H. Towards interpretable deep learning models for knowledge tracing. In Proc. the 21st International Conference on Artificial Intelligence in Education, Jul. 2020, pp.185–190. DOI: 10.1007/978-3-030-52240-7_34.
Pardos Z A, Bergner Y, Seaton D T, Pritchard D E. Adapting Bayesian knowledge tracing to a massive open online course in edX. In Proc. the 6th International Conference on Educational Data Mining, Jul. 2013, pp.137–144.
Johnson M J. Scaling cognitive modeling to massive open environments. In Proc. the ICML Workshop on Machine Learning in Education, Jul. 2015. http://ml4ed.cc/attachments/XuY.pdf, Nov. 2023.
Ruder S. An overview of gradient descent optimization algorithms. arXiv: 1609.04747, 2016. https://arxiv.org/abs/1609.04747, Nov. 2023.
Bock R D, Aitkin M. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 1981, 46(4): 443–459. DOI: https://doi.org/10.1007/BF02293801.
Segall D O. Multidimensional adaptive testing. Psychometrika, 1996, 61(2): 331–354. DOI: https://doi.org/10.1007/BF02294343.
Feng M Y, Heffernan N, Koedinger K. Addressing the assessment challenge with an online system that tutors as it assesses. User Modeling and User-Adapted Interaction, 2009, 19(3): 243–266. DOI: https://doi.org/10.1007/s11257-009-9063-7.
Chang H S, Hsu H J, Chen K T. Modeling exercise relationships in E-learning: A unified approach. In Proc. the 8th International Conference on Educational Data Mining, Jun. 2015, pp.532–535.
Yang H Q, Cheung L P. Implicit heterogeneous features embedding in deep knowledge tracing. Cognitive Computation, 2018, 10(1): 3–14. DOI: https://doi.org/10.1007/s12559-017-9522-0.
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In Proc. the 13th International Conference on Artificial Intelligence and Statistics, May 2010, pp.249–256.
Liu Q, Wu R Z, Chen E H, Xu G D, Su Y, Chen Z G, Hu G P. Fuzzy cognitive diagnosis for modelling examinee performance. ACM Trans. Intelligent Systems and Technology, 2018, 9(4): 1–26. DOI: https://doi.org/10.1145/3168361.
Jang E E. A *validity narrative: Effects of reading skills diagnosis on teaching and learning in the context of NG TOEFL [Ph. D. Thesis]. University of Illinois at Urbana-Champaign, Champagne, 2005.
Gervet T, Koedinger K, Schneider J, Mitchell T. When is deep learning the best approach to knowledge tracing?. Journal of Educational Data Mining, 2020, 12(3): 31–54. DOI: https://doi.org/10.5281/zenodo.4143614.
Hodges J L. The significance probability of the Smirnov two-sample test. Arkiv för Matematik, 1958, 3(5): 469–486. DOI: https://doi.org/10.1007/BF02589501.
Wu R Z, Xu G D, Chen E H, Liu Q, Ng W. Knowledge or gaming?: Cognitive modelling based on multiple-attempt response. In Proc. the 26th International Conference on World Wide Web Companion, Apr. 2017, pp.321–329. DOI: 10.1145/3041021.3054156.
Zhao X, Zhang J J, Li W S, Kahn K, Lu Y, Winters N. Learners’ non-cognitive skills and behavioral patterns of programming: A sequential analysis. In Proc. the 21st International Conference on Advanced Learning Technologies, Jul. 2021, pp.168–172. DOI: 10.1109/ICALT52272.2021.00058.
Jiang L, Wang P Y, Cheng K, Liu K P, Yin M H, Jin B, Fu Y J. EduHawkes: A neural Hawkes process approach for online study behavior modeling. In Proc. the 2021 SIAM International Conference on Data Mining, Apr. 2021, pp.567–575. DOI: 10.1137/1.9781611976700.64.
Zhang H, Huang T, Liu S Y, Yin H, Li J, Yang H L, Xia Y. A learning style classification approach based on deep belief network for large-scale online education. Journal of Cloud Computing, 2020, 9(1): 1–17. DOI: https://doi.org/10.1186/s13677-020-00165-y.
Chen Y X, Li X O, Liu J C, Ying Z L. Recommendation system for adaptive learning. Applied Psychological Measurement, 2018, 42(1): 24–41. DOI: https://doi.org/10.1177/0146621617697959.
Dang F R, Tang J T, Pang K Y, Wang T, Li S S, Li X. Constructing an educational knowledge graph with concepts linked to Wikipedia. Journal of Computer Science and Technology, 2021, 36(5): 1200–1211. DOI: https://doi.org/10.1007/s11390-020-0328-2.
Zhu J Z, Jia Y T, Xu J, Qiao J Z, Cheng X Q. Modeling the correlations of relations for knowledge graph embedding. Journal of Computer Science and Technology, 2018, 33(2): 323–334. DOI: https://doi.org/10.1007/s11390-018-1821-8.
Nakagawa H, Iwasawa Y, Matsuo Y. Graph-based knowledge tracing: Modeling student proficiency using graph neural network. In Proc. the 2019 IEEE/WIC/ACM International Conference on Web Intelligence, Oct. 2019, pp.156–163. DOI: 10.1145/3350546.3352513.
Chen C H, Liu G Z, Hwang G J. Interaction between gaming and multistage guiding strategies on students’ field trip mobile learning performance and motivation. British Journal of Educational Technology, 2016, 47(6): 1032–1050. DOI: https://doi.org/10.1111/bjet.12270.
Hwang G J, Wang S Y. Single loop or double loop learning: English vocabulary learning performance and behavior of students in situated computer games with different guiding strategies. Computers & Education, 2016, 102: 188–201. DOI: https://doi.org/10.1016/j.compedu.2016.07.005.
Chen S Y, Yeh C C. The effects of cognitive styles on the use of hints in academic English: A learning analytics approach. Educational Technology & Society, 2017, 20(2): 251–264.
Muir M, Conati C. Understanding student attention to adaptive hints with eye-tracking. In Proc. the 19th International Conference on Advances in User Modeling, Jul. 2011, pp.148–160. DOI: 10.1007/978-3-642-28509-7_15.
Wang Y T, Heffernan N T. The “assistance” model: Leveraging how many hints and attempts a student needs. In Proc. the 24th International Florida Artificial Intelligence Research Society Conference, May 2011.
Author information
Authors and Affiliations
Corresponding author
Supplementary Information
ESM 1
(PDF 209 kb)
Rights and permissions
About this article
Cite this article
Liu, JY., Wang, F., Ma, HP. et al. A Probabilistic Framework for Temporal Cognitive Diagnosis in Online Learning Systems. J. Comput. Sci. Technol. 38, 1203–1222 (2023). https://doi.org/10.1007/s11390-022-1332-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11390-022-1332-5