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Abstract 
This article describes the user modeling, feature extraction and bagged decision tree methods that 

were used to win 2
nd

 place student prize and 4
th

 place overall in the ACM’s 2010 KDD Cup. 
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1 Introduction 

The datasets for the 2010 Knowledge Discover and Data Mining Cup came from Intelligent 

Tutoring Systems (ITS) used by thousands of students over the course of the 2008-2009 school 

year. This was the first time the Association for Computing Machinery (ACM) used an 

educational data set for the competition and also marked the largest dataset the competition has 

hosted thus far. There were 30 million training rows and 1.2 million test rows in total occupying 

over 9 gigabytes on disk. The competition consisted of two datasets from two different algebra 

tutors made by Carnegie Learning. One came from the Algebra Cognitive Tutor system; this 

dataset was simply called “Algebra”. The other came from the Bridge to Algebra Cognitive Tutor 

system whose dataset was aptly called “Bridge to Algebra”. The task was to predict if a student 

answered a given math step correctly or incorrectly given information about the step and the 

students past history of responses. Predictions between 0 and 1 were allowed and were scored 

based on root mean squared error (RMSE). In addition to the two challenge datasets, three 

datasets were released prior to the start of the official competition. Two datasets were from the 

two previous years of the Carnegie Learning Algebra tutor and one was from the previous year of 

the Bridge to Algebra tutor. These datasets were referred to as the development datasets. Full test 

labels were given for these datasets so that competitors could familiarize themselves with the data 

and test various prediction strategies before the official competition began. These datasets were 

also considerably smaller, roughly 1/5
th
 the size of the competition datasets. A few anomalies in 

the 2007-2008 Algebra development dataset were announced early on; therefore that dataset was 

not analyzed for this article. 

1.1 Summary of methods used in the final prediction model 

The final prediction model was an ensemble of Bayesian Hidden Markov Models (HMMs) and 

Random Forests (bagged decision trees with feature and data re-sampling randomization). One of 

the HMMs used was a novel Bayesian model developed by the authors, built upon prior work 

(Pardos & Heffernan, 2010a) that predicts the probability of knowledge for each student at each 

opportunity as well as a prediction of probability of correctness on each step. The model learns 

individualized student specific parameters (learn rate, guess and slip) and then uses these 
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parameters to train skill specific models. The resulting model that considers the composition of 

user and skill parameters outperformed models that only take into account parameters of the skill. 

The Bayesian model was used in a variant of ensemble selection (Caruana and Niculescu-Mizil, 

2004) and also to generate extra features for the decision tree classifier. The bagged decision tree 

classifier was the primary classifier used and was developed by Leo Breiman (Breiman, 2001).  

1.2 The Anatomy of the Tutor  

While the two datasets came from different tutors, the format of the datasets and underlying 

structure of the tutors was the same. A typical use of the system would be as follows; a student 

would start a math curriculum determined by her teacher. The student would be given multi step 

problems to solve often consisting of multiple different skills. The student could make multiple 

attempts at answering a question and would receive feedback on the correctness of her answer. 

The student could ask for hints to solve the step but would be marked as incorrect if a hint was 

requested. Once the student achieved “mastery” of a skill, according to the system, the student 

would no longer need to solve steps of that skill in their current curriculum, or unit. 

The largest curriculum component in the tutor is a unit. Units contain sections and sections 

contain problems. Problems are the math questions that the student tries to answer which consist 

of multiple steps. Each row in the dataset represented a student’s answer to a single step in a 

problem. Determining whether or not a student answers a problem step correctly on the first 

attempt was the prediction task of the competition.  

Students’ advancement through the tutor curriculum is based on their mastery of the skills 

involved in the pedagogical unit they are working on. If a student does not master all the skills in 

a unit, they cannot advance to the next lesson on their own; however, a teacher may intervene and 

skip them ahead. 

1.3 Format of the datasets  

The datasets all contained the same features and the same format. Each row in a dataset 

corresponded to one response from a student on a problem step. Each row had 18 features plus 

the target, which was “correct on first attempt”. Among the features were; unit, problem, step and 

skill. The skill column specified which math skill or skills were associated with the problem step 

that the student attempted. A skill was associated with a step by Cognitive tutor subject matter 

experts. In the development datasets there were around 400 skills and around 1,000 in the 

competition datasets. The Algebra competition set had two extra skill association features and the 

Bridge to Algebra set had one extra. These were alternative associations of skills to steps using a 

different bank of skill names (further details were not disclosed). The predictive power of these 

skill associations was an important component of our HMM approach. 

 

Figure 1. The test set creation processes as illustrated by the organizers 
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The organizers created the competition training and test datasets by iterating through all the 

students in their master dataset and for each student and each unit the student completed, 

selecting an arbitrary problem in that unit and placing into the test set all the student’s rows in 

that problem. All the student’s rows in that unit prior to the test set problem were placed in the 

training set. The rows following the selected problem were discarded. This process is illustrated 

in Figure 1 (compliments of the competition website). 

1.4 Missing data in the test sets 

Seven columns in the training sets were intentionally omitted from the test sets. These columns 

either involved time, such as timestamp and step duration or information about performance on 

the question, such as hints requested or number of incorrect attempts at answering the step. 

Competition organizers explained that these features were omitted from the test set because they 

made the prediction task too easy. In internal analysis we confirmed that step duration was very 

predictive of an incorrect or correct response and that the value of the hints and incorrects column 

completely determined the value of the target, “correct on first attempt”. This is because the tutor 

marks the student as answering incorrect on first attempt if they receive help on the question, 

denoted by a hint value of greater than 0. The incorrects value specified how many times the 

student answered the step incorrectly. 

In the development datasets, valuable information about chronology of the steps in the test 

rows with respect to the training rows could be determined by the row ID column; however, in 

the challenge set the row ID of the test rows was reset to 1. The test row chronology was 

therefore inferred based on the unit in which the student answered problem steps in. A student’s 

rows for a given unit in the test set were assumed to come directly after their rows for that unit in 

the training set. While there may have been exceptions, this was a safe assumption to make given 

the organizers description of how the test rows were selected, as described in section 1.3. 

2 Data preparation 

The first step to being able to work with the dataset was to convert the categorical, alphanumeric 

fields of the columns into numeric values. This was done using perl to hash text values such as 

anonymized usernames and skill names into integer values. The timestamp field was converted to 

epoc and the problem hierarchy field was parsed into separate unit and section values. Rows were 

divided out into separate files based on skill and user for training with the Bayes Nets. 

Special attention was given to the step duration column that describes how long the student 

spent answering the step. This column had a high percentage of null and zero values making it 

very noisy. For the rows in which the step duration value was null or zero, a replacement to the 

step duration value was calculated as the time elapsed between the current row’s timestamp and 

the next row’s timestamp for that same user. Outlier values for this recalculated step time were 

possible since the next row could be another day that the student used the system. It was also the 

case that row ID ordering did not strictly coincide with timestamp ordering so negative step 

duration values occurred periodically. Whenever a negative value or value greater than 1,000 

seconds was encountered, the default step duration value of null or zero was kept. The step 

duration field was used for feature generation described in the Random Forests section. 

2.1 Creating an internal validation dataset 

An internal validation dataset was created in order to provide internal scoring of various 

prediction models. Besides using the scoring to test the accuracy of the Bayesian Networks and 

Random Forests methods it was also used to test various other approaches such as neural 

networks, linear regression and SVMs (see appendix). A validation dataset was created for each 

of the competition datasets from the training datasets by taking all the rows in the last problem of 

each student’s units and placing them in the validation set and the remaining data into an internal 
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training set. This process was meant to mirror the processes used by the organizers to create the 

official test set, described in section 1.3. The only difference was that the last problem in a unit 

was selected instead of an arbitrary problem in a unit. The missing features from the official test 

sets were also removed from the created validation sets. By fashioning the validation sets after the 

official test set, a high correlation between validation and test set results should be achieved. A 

second validation set was also created so that ensemble methods could be tested internally. This 

set was created from the training rows that were not placed into the first validation set. The 

second validation set constituted rows from students’ second to last problem in each of their units. 

2.2 Knowledge Component columns in the dataset 

The Knowledge Component (KC) columns in the dataset described the skill or skills involved in 

the row’s problem step. Different KC columns used a different group of skills to describe a 

problem step. The KCs are used in Cognitive Tutors to track student learning over the course of 

the curriculum. KC skill associations that more accurately correlated with the student’s 

knowledge at that time will also more accurately predict future performance. Because of this it 

was important to explore which KC columns most accurately fit the data for each dataset. 

2.2.1 Rows of data where a KC column had no value 

There were a large percentage of rows (~20-25%) in both the training and test sets in which one 

or more KC columns had no value. That is, no skill was associated with the problem step. The 

Bayesian model needs skill associations to predict performance so this issue needed to be 

addressed. The solution was to treat null KC values as a separate skill with ID 1, called the NULL 

skill. A skill that appears in a separate unit is considered a separate skill so there were as many 

null ID skills as there were units. These null skill steps were predicted with relatively low error 

(RMSE ~0.20). In personal communication with Carnegie Learning staff after the competition, it 

was suggested that the majority of the null steps were most likely non math related steps such as 

clicking a button or other interface related interactions. 

2.2.2 Handling of KC values with multiple skills 

There can be one or more skills associated with a step for any of the KC columns. Modeling 

multiple skills with Knowledge Tracing is significantly more complex and is not a standard 

practice in student modeling. To avoid having to model multiple skills per step, the KC values 

with multiple skills were collapsed into one skill. Two strategies for collapsing the values were 

tried for each KC column. The first was to keep only the most difficult skill. This approach is 

based on the hypothesis that skills compose conjunctively in an ITS. Difficulty was calculated 

based on percent correct of all rows in the training set containing that skill. KC models applying 

this strategy will be labeled with “-hard” throughout the text. The second way of collapsing 

multiple skill values was to treat a unique set of skills as a completely separate skill. Therefore, a 

step associated with “Subtraction” and “Addition” skills would be merged into the skill of 

“Subtraction-Addition”. KC models applying this strategy will be labeled with “-uniq” 

throughout the text. The result of this processing was the generation of two additional skill 

models for each KC column for each challenge set. All of the development dataset analysis in this 

paper uses only the unique strategy, for brevity. 

3 Bayesian Networks Approach 

Bayesian Networks were used to model student knowledge over time. A simple HMM with one 

hidden node and one observed node has been the standard for tracking student knowledge in ITS 

and was introduced to the domain by Corbett and Anderson (Corbett & Anderson, 1995). In this 

model, known as Knowledge Tracing, a student’s incorrect and correct responses to questions of 

a particular skill are tracked. Based on the parameters of the HMM for that skill and the student’s 
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past responses, a probability of knowledge is inferred. In the Cognitive Tutor, students who know 

a skill with 95% probability, according to the HMM, are considered to have mastered that skill. 

There are four parameters of the HMM and they can be fit to the data using Expectation 

Maximization (EM) or a grid search of the parameter space. We used EM with a max iteration of 

100. EM will also stop if the log likelihood fit to the data increases by less than 1e-5 between 

iterations. While this simple HMM was the basis of our Bayesian Networks approach, additional 

models which utilized the parameters learned by the simpler models were utilized for prediction. 

3.1 The Prior Per Student Model (Simple Model) 

Standard knowledge tracing has four parameters. A separate set of parameters are fit for each skill 

based on students’ sequences of responses to steps of that skill. The intuition is that students will 

learn a skill over time. The latent represents knowledge of that skill and the two transition 

probabilities for the latent are prior knowledge and learning rate. Prior knowledge is the 

probability that students knew the skill prior to working on the tutor. Learning rate is the 

probability that students will transition from the unlearned to the learned state between 

opportunities to answer steps of that skill. The probability of transitioning from learned to 

unlearned (forgetting) is fixed at zero since the time between responses is typically less than 24 

hours. Forgetting is customarily not modeled in Knowledge Tracing; however, it certainly could 

be occurring given a long enough passage of time between opportunities. The two emission 

probabilities are the guess and slip rate. Guess is the probability of observing a correct response 

when the student is in the unlearned state. Slip is the probability of observing an incorrect 

response when the student is in the learned state. Prior work by the authors has shown that 

modeling a separate prior per student in the training and prediction steps can increase the 

accuracy of the learned parameters (Pardos & Heffernan, 2010b) as well as prediction accuracy 

(Pardos & Heffernan, 2010a). In parameter analysis work, simulated datasets created from a 

known distribution were analyzed by the standard knowledge tracing model and by one that 

allowed for a prior per student based on the student’s first response. The prior per student model 

resulted in more accurate convergence to the ground truth parameter values regardless of initial 

parameter values for EM parameter learning. The standard Knowledge Tracing model, however, 

was very sensitive to initial parameter values in converging to the ground truth parameters. 

 

 

Figure 2. Prior Per Student (PPS) model parameters and topology 

Figure 2 shows the Prior Per Student (PPS) model topology. In this model the student node acts 

as a unique student identifier with values that range from 1 to N where N is the number of 

students in the dataset; however, we have found that modeling only two distinct priors and 

assigning a student to one of those priors based on their first response is an effective heuristic. We 

Model Parameters
P(L0) = Probability of initial knowledge
P(L0|S) = Individualized P(L0)
P(T) = Probability of learning
P(G) = Probability of guess
P(S) = Probability of slip

Node representations
K  = Knowledge node
Q = Question node
S = Student node 

K K K

Q Q Q

P(T) P(T)P(L0|S)

P(G)

P(S)

S

Prior Per Student Model

Node states
K = Two state (0 or 1)
Q = Two state (0 or 1)
S  = Two state (0 or 1)
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refer to this as the cold start heuristic. If a student answers the first observed step incorrectly, they 

are assigned a prior of 0.10, if they answer the step correctly; they are assigned a prior of 0.85. 

These values were chosen ad-hoc based on experimentation with this and other datasets. One 

alternative to the ad-hoc setting is to let the two prior seeding values be adjusted and learned from 

data. These values may be capturing guess and slip probabilities so another alternative is to have 

the prior seeding values be the same as the guess and slip values. We tested these three strategies 

with the two development datasets and found the following results, shown in Table 1. 

 

 Algebra (development) 

 Strategy RMSE 

1 adjustable 0.3659 

2 guess/slip 0.3660 

3 Ad-hoc 0.3662 
 

 Bridge to Algebra (development) 

 Strategy RMSE 

1 guess/slip 0.3227 

2 adjustable 0.3228 

3  Ad-hoc 0.3236 
 

Table 1. Results of prior seeding strategies on the two development datasets 

Table 1 shows that for the algebra (development) datasets, the difference between the ad-hoc and 

adjustable strategy was 0.0003. This appeared to be a small benefit at the time and the extra free 

parameters of the adjustable strategy added to the compute time of the EM runs. While the 

guess/slip strategy added less compute time than the adjustable strategy, the ad-hoc value strategy 

was chosen to be used going forward with all models used for the competition datasets because of 

the small difference in RMSE and because this strategy had already been more carefully studied 

in past work (Pardos & Heffernan, 2010b). Another reason Ad-hoc was chosen is because it 

appeared to be the best strategy in the bridge to algebra dataset when initially calculated. Upon 

closer inspection for this article, the Ad-hoc prediction was missing around 250 rows compared to 

the other strategy predictions. After correcting this, the guess/slip strategy appears favorable. 

3.1.1 Limiting the number of student responses used 

The EM training for skills with high amounts of student responses would occupy over 8GB of 

virtual memory on the compute machines. This was too much as the machines used to run these 

models had only 8GB and reaching into swap memory caused the job to take considerably longer 

to finish. The skills with high amounts of data often had over 400 responses by one student. To 

alleviate the memory strain, limits were placed on the number of most recent responses that 

would be used in training and prediction. The limits tested were 5, 10, 25, 150 and none. 

 

 Algebra (development) 

 Limit RMSE 

1 25 0.3673 

2 150 0.3675 

3 none 0.3678 

4 10 0.3687 

5 5 0.3730 
 

 Bridge to Algebra (development) 

 Limit RMSE 

1 10 0.3220 

2 25 0.3236 

3 5 0.3239 

4 none 0.3252 

5 150 0.3264 
 

Table 2. Results of limiting the number of most recent student responses used for EM training 

Table 2 shows the prediction RMSE on the development sets when limiting the number of most 

recent student responses used for training and prediction. A surprising result was that very few 

responses were needed to achieve the same or better results as using all data. In the algebra 

(development) set, 25 was the best limit of the limits tried and was the second best limit in the 

bridge to algebra (development) set. This prediction improvement was a welcomed bonus in 

addition to eliminating the memory issue which would have been compounded when working 

with the much larger competition sets. A limit of 25 would be used for all subsequent models. 
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3.1.2 Distribution of skill parameters 

Using the PPS model; learn, guess and slip rates were learned from the data for all 387 skills in 

the algebra (development) set and 442 skills in the bridge to algebra (development) set. The 

distribution of the values of those parameters is shown with histograms in Figure 3.  

Algebra (development) 

 
Bridge to Algebra (development) 

 

Figure 3. Distribution of skill parameters in the algebra and bridge to algebra development sets 

The X axis of the histograms in Figure 3 is the value of the parameter and the Y axis is the 

occurrence of that parameter value among the skills in the dataset. These parameters were learned 

from the data using EM with the prior per student model (cold start heuristic). Figure 3 shows that 

both datasets are populated with skills of various learning rates with a higher frequency of skills 

that are either very hard or very easy to learn. Both datasets have a high frequency of skills that 

are both hard to guess and hard to slip on. The Algebra (development) set appears to have slightly 

more skills with higher slip rates than bridge to algebra (development).  

3.1.3 Prediction performance of the KC models in the challenge datasets 

Unlike the development sets, the challenge datasets had multiple KC columns which gave 

different skill associations for each step. The bridge to algebra set had two KC columns while the 

algebra set had three. As described in section 2.2.2, two versions of each KC model were created; 

each using a different strategy for converting multi skill step representations to a single skill. The 

results in Table 3 describe the KC model and RMSE. KC model “2-hard”, for instance, refers to 

the 2
nd

 KC model for that dataset with “use the hardest skill” applied for multiple skill steps while 

KC model “2-uniq” refers to the 2
nd

 KC model using “treat a set of skills as a separate skill”. 

 

 Algebra (challenge) 

 KC model # Skills RMSE 

1 3-hard 2,359 0.2834 

2 3-uniq 2,855 0.2835 

3 1-hard 1,124 0.3019 

4 1-uniq 2,207 0.3021 

5 2-uniq 845 0.3049 

6 2-hard 606 0.3050 
 

 Bridge to Algebra (challenge) 

 KC model # Skills RMSE 

1 1-hard 1,117 0.2858 

2 1-uniq 1,809 0.2860 

3 2-hard 920 0.2870 

4 2-uniq 1,206 0.2871 
 

Table 3. Prediction accuracy of the KC models in both challenge datasets 
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The most significant observation from Table 3 is the considerably better performance of the third 

KC model in the algebra set. The different of 0.0185 between the algebra KC models 3-hard and 

1-hard is greater than the RMSE difference between the first and tenth overall finisher in the 

competition. The differences between the multiple skill approaches were negligible. Table 3 also 

shows the number of skills in each competition datasets per KC model with the hard and unique 

multi-skill reduction strategy applied. The unique strategy always created more rules but the 

difference is most prominent for KC column 1. The table also shows how the various KC models 

differ in skill granularity; Algebra model 2-hard has only 606 skills used to associated with steps 

while Algebra model 3-hard used 2,359 skills to associate with those steps. Among the “–hard” 

models, the more skills the KC model had, the better it performed.  

It is important to note that the Bayesian models only made predictions when there existed 

previous responses by the student to the skill being predicted. If no prior skill data existed no 

prediction was made. No previous skill information for a student was available in a significant 

portion of the test data (~10%). Therefore, the RMSE scores shown in Table 3 represent the 

RMSE only for the predicted rows and not the entire test set. It was also the case that total 

number of predicted rows for each KC model differed by ~1,200, likely due to a Bayesian skill 

prediction job not finishing or other processing anomaly. While 1,200 rows only constitutes 0.2% 

of the total algebra test rows it was a significant enough difference to cause the algebra 3-uniq 

KC model to appear to have a lower RMSE than 3-hard and for the bridge to algebra KC model 

1-uniq to appear to have a lower RMSE than 1-hard in our preliminary RMSE calculations. 

Because of this, all subsequent models run during the competition were created using 3-uniq and 

1-uniq. The RMSE scores in Table 3 are the corrected calculations based only on the test rows 

that all the KC model predictions had in common which was 435,180/508,912 (86%) rows for 

algebra and 712,880/774,378 (92%) rows for bridge to algebra. The additional prediction rows 

were filled in by Random Forests for the final submission. 

3.2 The Student-Skill Interaction Model (Complex Model) 

The more complex model expanded on the simple model considerably. The idea was to learn 

student specific learn, guess and slip rates and then use that information in training the parameters 

of skill specific models. The hypothesis is that if a student has a general learning rate trait then it 

can be learned from the data and used to benefit inference of how quickly a student learns a 

particular skill and subsequently the probability they will answer a given step correctly. This 

model was created during the competition and has not been described previously in publication. 

The first step in training this model was to learn student parameters one student at a time. 

Student specific parameters were learned by using the PPS model by training on all skill data of 

an individual student one at a time. The rows of the data were skills encountered by the student 

and the columns were responses to steps of those skills. All responses per skill started at column 1 

in the constructed training set of responses. Some skills spanned more columns than others due to 

more responses on those skills. EM is able to work with this type of sparsity in the training 

matrix. 

The second step was to embed all the student specific parameter information into the complex 

model, called the Student-Skill Interaction (SSI) model, shown in Figure 4. Parameters were then 

learned for the SSI model given the student specific parameter values. After the parameters were 

trained the model could be used to predict unseen data given past history of responses of a student 

on a skill. Depending on the learning rate of the skill and the learning rate of the user, the model 

would forecast the rate of acquiring knowledge and give predictions with increasing probability 

of correct on each subsequent predicted response for a student on steps of a particular skill.  

The limitation of the model is that it requires that a plentiful amount of data exists for the 

student in order to train their individual parameters. The format of the competition’s data was 

ideal for this model since the students in the training set also appeared in the test set and because 

student data was available in the training set for a variety of skills. 
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Figure 4. Student-Skill Interaction (SSI) model parameters and topology 

There was an SSI model trained for each skill but each SSI model was fixed with the same 

student specific parameter data. For example, the list of student learning rates is placed into the 

conditional probability table of the T node. There are six parameters that are learned in the SSI 

model. The effect of the student parameter nodes is to inform the network which students have 

high or low learn, guess or slip rates and allow the skill parameters to be learned conditioning 

upon this information. For example, two learning rates will be learned for each skill. One learning 

rate for if the student is a high learner (described in the T node) and one learning rate for if the 

student is a low learner. The same is done for the skill’s guess and slip parameters. These values 

can be different for each skill but they are conditioned upon the same information about the 

students. While a student may have a high individual learn rate, the fast-student learn rate for a 

difficult skill like Pythagorean Theorem may be lower than the fast-student learn rate for 

subtraction. The model also allows for similar learn rates for both fast and slow student learners. 

Results of SSI vs. PPS are shown in Table 4. The improvement is modest but was greater than the 

difference between 1
st
 and 3

rd
 place overall in the competition. The difference between SSI and 

PPS squared errors were significant for both datasets at the p << 0.01 level using a paired t-test. 

 

 Algebra (challenge) 

 Bayesian model RMSE 

1 SSI (KC 3-2) 0.2813 

2 PPS (KC 3-2) 0.2835 

Improvement: 0.0022 
 

 Bridge to Algebra (challenge) 

 Bayesian model RMSE 

1 SSI (KC 1-2) 0.2824 

2 PPS (KC 1-2) 0.2856 

Improvement: 0.0032 
 

Table 4. Results of the SSI model vs. the PPS model. 

3.2.1 Distribution of student parameters 

Individual student learn, guess and slip rates were learned from the data for all 575 student in the 

algebra (development) set and 1,146 student in the bridge to algebra (development) set. The 

distribution of the values of those parameters for each dataset is shown in Figure 5. 

Model Parameters
P(L0) = Probability of initial knowledge
P(L0|Q1) = Individual Cold start P(L0)
P(T) = Probability of learning
P(T|S) = Students’ Individual P(T)
P(G) = Probability of guess
P(G|S) = Students’ Individual P(G)
P(S) = Probability of slip
P(S|S) Students’ Individual P(S)

Node representations
K  = Knowledge node
Q = Question node
S = Student node
Q1= first response node
T = Learning node
G = Guessing node
S = Slipping node

Parameters in bold are learned
from data while the others are fixed

K K K

Q Q Q

P(T) P(T)P(L0|Q1)

P(G)

P(S)

S

Student-Skill Interaction Model

Node states
K , Q, Q1, T, G, S = Two state (0 or 1)
Q = Two state (0 or 1)
S  = Multi state (1 to N)
(Where N is the number of students in the training data)

G S

T

P(T|S)

P(G|S) P(S|S)

Q1
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Algebra (development) 

 
Bridge to Algebra (development) 

 

Figure 5. Distribution of student parameters in the algebra and bridge to algebra development sets 

Figure 5 shows that users in both datasets have low learning rates but that a small portion of 

students posses learning rates in each range. Moderate guessing and low slipping existed among 

students in both datasets. The majority of the parameters learned fell within plausible ranges. 

4 Random Forests Classifier 

Leo Breiman’s Random Forests© (Breiman, 2001) wer used to make predictions based on a rich 

set of features from the training and testing sets. Random Forests is a variant on bagged decision 

trees. Random Forests trains an ensemble of decision tree classifiers or regression trees and uses 

bagging to combine predictions. Each tree selects a portion of the features at random and a 

random resampling of the data to train on. This approach required feature engineering and feature 

extraction as opposed to the HMM approach which required student responses grouped by skill. 

4.1 Parameters of the Random Forest algorithm 

MATLAB’s TreeBagger implementation of bagged decision trees was used. Regression mode 

was used so that the end prediction would be a value between 0 and 1 representing the probability 

of the binary class. The number of features for each tree to sample was left at its default for 

regression mode; 1/3
rd

 the number of features. The two parameters that were modified were 

MinLeaf and NumTrees. MinLeaf is the minimum number of observations needed per tree leaf. 

This is recommended to be set at 1 for classification and 5 for regression; however, the optimal 

values for this parameter were often between 15 and 65 based on testing with a small validation 

set. The NumTrees parameter is the number of random decision trees trained. The rule of thumb 

is to use a value of 50 or greater. Values between 50 and 800 were tried. For some of the feature 

sets a randomly chosen 50,000 rows were used for training and 50,000 for testing in order to do a 

parameter search of the optimal MinLeaf parameter. MinLeaf was searched from 1 to 100 in 

increments of 1 and NumTrees was set at 50 for this parameter search. NumTrees did not appear 

to affect the optimal MinLeaf value chosen; however, this was not tested thoroughly. It is 

possible that there is a different optimal MinLeaf value depending on NumTrees. Each tree 

trained by Random Forests resamples from the training data, with replacement. The size of the 

resampled training data can be set, however, this was left at its default value which was to create 

a resampled set the same size as the original training set. 
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4.2 Feature Extraction 

Feature sets for random forest training and prediction were created. Some were created based on 

KCs while others were based on user and problem properties. The largest set contained 146 

featured. The features created for training had to also be created for the official test sets, which 

contained missing features that were not missing in the official training sets. With this in mind, 

the strategy was to aggregate existing features from the training set into the test set. An example 

of this would be creating a feature called “average step duration of student on skill”. The feature 

of “step duration” exists in the official training set but not the test set. So, in order to add this 

feature to the test set, the average step duration of student 10 on skill B, for example, was 

calculated for the data in the training set and every row in the test set that contained student 10 

and skill B was given this aggregated value for the “average step duration of student on skill” 

feature column. This process was used to create many of the features for the test set. The training 

dataset had to contain the same features as the test set in order for the test set features to be of use. 

In order to accomplish this, the internal validation sets were utilized. Since the validation set was 

of the same format as the test set, the same feature creation procedure was run on the validation 

set using the remainder of the training set data not used in the validation set. Figure 6 depicts the 

portions of the dataset that were used for generating the feature rich datasets that the Random 

Forests ultimately trained on. 

 

Figure 6. Diagram of the segments of the dataset that were used for generating the various feature 

rich datasets used for Random Forests training and testing 

Figure 6 shows, for instance, how the non-validation training rows (nvtrain) in addition to 

validation set 2 (val2) were used to generate features for the feature rich validation set 2 (frval2). 

Only nvtrain was used to generate missing test set related features, such as “average step duration 

of student on skill”, for frval2; however, val2 could still be used to generate features that were 

available in the official test set, such as “number of questions answered by student in this 

problem”. 

Random Forests was trained on frval1 to predict frval2 and trained on frval2 to predict frval1 

as part of a 2-fold internal cross-validation. The datasets frval1 and frval2 were combined when 

training the Random Forests models to make predictions on the official test set. The cross-

validated frval1 and frval2 predictions were combined as the validation set for Ensemble 

selection. The Bayesian network SSI model was also used to generate features as well as its 

predictions for the feature rich sets. To produce features for frval2, only nvtrain was used to train 

parameters for the model. To produce features for frval1, only data from nvtrain+val2 were used 

and to produce features for the official test set, data from the entire training set were used 

(nvtrain+val1+val2). 
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4.2.1 Percent correct features 

For each skill, the percent correct of steps associated with that skill was calculated for each 

section, problem and step the skill was associated with including the overall percent correct for 

steps of that skill. This was done for each of the skill models in each of the challenge datasets. 

Percent correct was also calculated for each student by unit, section, problem, step and overall 

percent correct. These features were joined into the test sets that will be used as training sets. The 

joining looks at the user, skill, unit, section, problem and step of the row in the test set and adds 

the appropriate ten percent correct features to it, five from user and five from skill. 

4.2.2 Student progress features 

These features were based upon previous performance of a student in the training set prior to 

answering the test row. Many of these features were adopted from work on gaming the system 

(Baker et al., 2008) which is a type of behavior a student can exhibit when he or she is no longer 

trying to learn or solve the problem but instead is clicking through help and hints in the problem. 

Features of student progress that were generated included the following: 

 The number of data points: [today, on the first day of using the tutor, since starting the 

tutor, on the first day of starting the current unit] 

 The number of correct answers among the last [3, 5, 10] responses 

 The percent correct among the last [3, 5, 10] responses 

 The number of steps out of the last 8 in which a hint was requested 

 The mean number of hints requested in the last 10 steps 

 The mean number of incorrect attempts in the last 10 steps 

 The number of days since [starting the tutor, starting the unit] 

 The sum of the last [3, 10] z-scores for [step duration, hints requested, incorrect attempts] 

 

Z-scores were calculated by first calculating the mean and standard deviation of step 

duration, hints requested and incorrect attempts on a step for each skill. A z-score for step 

duration, for instance, was calculated by taking the step duration of a student on the last step and 

subtracting the mean step duration for that skill and then dividing that by the standard deviation 

step duration for that skill. The sum of the last three such z-scores constituted a feature. In 

addition to the features listed above, identical features were generated specific to the skill 

associated with the test row. For example, the feature “number of data points today” would 

become “number of data points of skill X today” where skill X is the still associated with the test 

row that the feature value is being generated for. There was often not enough past data for a 

particular skill to calculate the feature. Because of this, the skill specific version of student 

progress feature set covered fewer rows than the non-skill specific version. 

4.2.3 Bayesian HMM features 

The SSI model, which was run for each skill in the KC model of a dataset, generated various 

outputs that were treated as features for the Random forests. The features generated included: 

 The predicted probability of correct for the test row 

 The inferred probability of knowing the skill 

 The absolute value of the inferred probability of knowing the skill subtracted by the 

predicted probability of correct 

 The number of students used in training the parameters 

 The number of data points used in training the parameters 

 The final EM log likelihood fit of the parameters divided by the number of data points 

 The total number of steps in the predicted test problem 

 The number of steps completed thus far in the predicted test problem 
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 The number of steps completed divided by the total number of steps in the test problem 

 

Similar to the skill specific student progress features, the Bayesian HMM features required 

that prior skill data for the student be available. If such data were not available, no features were 

created for that test row. Because of this the Bayesian feature set did not cover all the test rows. 

4.3 Random forest prediction results 

After generating features for the three datasets (two validation sets and the official test set) based 

on the top KC models, Random forests were trained on the two validations sets. The RMSE 

results for the validation sets are shown in Table 5 for the best performing Random Forest 

parameter combination for the full feature set. Coverage percentage is also included indicating 

what percentage of the total validation rows were predicted by the feature set. Prediction using 

only basic percent correct features to train on is also included as a baseline.  

 

 Algebra (challenge) 

 Feature set RMSE Coverage 

1 All features 1.4942 87% 

2 Percent correct+ 0.2824 96% 

3 All features (fill) 0.2847 97% 
 

 Bridge to Algebra (challenge) 

 Feature set RMSE Coverage 

1 All features 0.2712 92% 

2 All features (fill) 0.2791 99% 

3 Percent correct+ 0.2800 98% 
 

Table 5. Random forest prediction results 

Table 5 shows that with all features, Random forests predict 92% of the bridge to algebra test set 

with an RMSE of 0.2712. This is outstanding prediction accuracy given that the winning RMSE 

for this dataset on the leaderboard was 0.2777. The problem was that the remaining 8% of the test 

rows represent students who do not have past data for the skill being predicted and this group was 

particularly difficult to predict. The “All features (fill)” was an attempt to fill in the missing 

values of “All features” by using the mean value of a column in place of its missing values and 

retraining on this “filled in” dataset. This approach provided some benefit over using just percent 

correct features to train the Random Forests with the bridge to algebra set but performed worse 

than the percent correct features in the algebra set. An improvement on this would have been to 

take the mean value for the column among the rows of the same skill. A step further still would 

have been to predict or impute the missing values using Random Forests. Time ran out in the 

competition so these last two steps became approaches for future investigation. 

4.4 Feature set importance 

The importance of the various feature sets was calculated by turning on the Random Forests out 

of bag permuted variable error calculation. This feature allowed the model to permute the value 

of each feature and then observe the change in mean standard error among tree predictions. A 

higher positive change in error indicates more importance.  

 

 Algebra (challenge) 

 Feature set Importance 

1 Student progress 1.4942 

2 Percent correct (Skill) 1.3615 

3 Student progress (Skill) 1.3094 

4 Percent correct (User) 1.2732 

5 SSI model features 0.9993 
 

 Bridge to Algebra (challenge) 

 Feature set Importance 

1 Percent correct (User) 2.1831 

2 Student progress 2.0989 

3 Student progress (Skill) 1.8118 

4 SSI model features 1.6436 

5 Percent correct (Skill) 1.5950 
 

Table 6. Random Forests average variable importance for each feature set 



 14 

A Random Forests model was trained on frval2 with the all features dataset with 200 trees and 

min leaf of 15. The average importance of each variable within a feature set was calculated to 

produce the results in Table 6. The table shows that the student progress feature set was highly 

important in both datasets. The percent correct features of the user were most important in the 

bridge to algebra set; however, the percent correct features of skill were the least important. 

Inversely, in the algebra set, the percent correct features of skill were more important than percent 

correct feature of the user. The importance of user features on bridge to algebra is perhaps one 

reason why the user and skill oriented SSI model showed a greater improvement over the skill 

only PPS model on bridge to algebra. The SSI model features added value but made the least 

impact on error on average. This was the only feature set containing features and a prediction 

from another classifier. This characteristic could have made it difficult for the decision trees to 

find additional exploitable patterns in these features. 

5 Ensemble selection 

A variant of ensemble selection (Caruana & Niculescu-Mizil, 2004) was used to blend the 

collection of Random Forests and Bayesian networks generated predictions. Because of the 

varying number of test rows covered by the predictions of each model, a special ensemble 

initialization technique was created whereby the best model was chosen first based on lowest 

validation set RMSE and subsequent models were chosen based on the RMSE of the predicted 

rows excluding the rows already added to the initialized ensemble. This allowed for models to be 

used for the portions of the data in which they excelled. For instance, the rows of the test set 

containing skills sparsely seen by the user were best predicted by a model that was not a top 

predicting model overall. 

After the initialization, all models were averaged with the current ensemble to determine 

which resulted in the best improvement to RMSE. The processes stopped when no averaging of 

models would improve RMSE with respect to the validation set. Only three models were chosen 

in the averaging stage for the bridge to algebra set and two for the algebra set. In this ensemble 

selection procedure, the validation set RMSE is minimized and the same actions are performed on 

the official test predictions as on the validation predictions. Since two validation sets had been 

made, we were able to confirm that this ensemble selection procedure decreased the RMSE on a 

hold out set and confirmed the benefit on the official test set through feedback from the 

leaderboard. Table 7 shows the models chosen during the initialization processes and what 

percent of the test rows were covered after adding the prediction’s rows to the ensemble. There 

were 76 models for ensemble selection of the algebra set and 81 for the bridge to algebra set. This 

included the Bayesian model predictions and Random forest predictions with various parameters. 

 

 Algebra (challenge) 

 Prediction file RMSE Coverage 

1 Rf600m35_allFeat 0.2762 87% 

2 SSI_KC_3-uniq 0.2758 91% 

3 Rf100m15_hints 0.2839 99% 

4 Rf100m15_pctCor 0.2840 100% 

RMSE after blending (2 models): 0.2834 
 

 Bridge to Algebra (challenge) 

 Prediction file RMSE Coverage 

1 Rf500m15_allFeat 0.2712 92% 

2 SSI_KC_1-uniq 0.2719 94% 

3 Rf800m15_pctCor2 0.2775 99% 

4 Rf250m15_pctCor 0.2785 100% 

RMSE after blending (3 models): 0.2780 
 

Table 7. Ensemble selection procedure and RMSE improvement on the hill climbing set 

Table 7 shows that the most accurate model chosen for both datasets was a Random Forests 

model. The second model chosen was the Bayesian SSI model illustrating that the Bayesian 

model captured variance not captured by the Random Forests models. This was likely due to the 

Bayesian model’s ability to competently model the temporal nature of the data.  
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6 Conclusion 

Combining user features with skill features was very powerful in both Bayesian and Random 

Forests approaches. Prediction error was very low for rows that had sufficient data to compile a 

complete user and skill feature set however error was very high for rows were the user did not 

have sufficient skill data. In order to increase prediction accuracy for these rows, imputing 

missing features could be very beneficial. Handling these rows is a worthy area of future study 

since prediction error of these rows substantially increased overall RMSE. Feature selection 

would likely have also improved prediction and a closer study of individual features importance 

is an important open question for future work. 

The strong performance of the Knowledge Tracing based PPS and SSI models demonstrated 

the power of the HMM assumption of learning in educational datasets. Only using the students’ 

past sequence of correct and incorrect responses by skill, the HMM model’s predictions rivaled 

that of the Random Forests approach which required substantial feature engineering. The Random 

Forests predictions, however, were able to increase the level of prediction accuracy by leveraging 

features not included in the HMMs. Random forests has not been previously used in the ITS 

community, however, given its standalone performance and performance in concert with HMMs, 

they would be a valuable option to consider for future research in student performance prediction.  
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APPENDIX 

Notes on other machine learning techniques attempted: Neural networks with 1-3 hidden layers 

were tried with layer node sizes iterated between 2 and 100. The predictive performance of the 

NNs was far below that of bagged decision trees. SVMs were also tried with both linear and non-

linear kernels. The linear kernel SVM parameters were explored using a coarse grid search and 

then a higher resolution search around the areas of low RMSE found in the first search. This 

approach resulted in prediction accuracies comparable to the neural network predictions. 

 

Notes on hardware and software used: A 30 node rocks cluster with 4 CPUs per node and a 6 

node rocks cluster with 8 CPUs per node were used to train the ~10,00 Bayesian skill models for 

the competition and to generate the feature sets. All skills for a KC model could be run in 2 days 

using the SSI model and 12 hours using the PPS model. Kevin Murphy’s Bayes Net Toolbox for 

MATLAB was used to construct and train the Bayesian Networks models. One 16 core and one 8 

core machine with 32gigs of RAM each were used to run the Random Forests classification using 

MATLAB’s TreeBagger function. The Parallel Computing Toolbox was used to parallelize the 

training of the Random forests decision tree classifiers over 8 processor cores. Random forests 

prediction took 2 to 14 hours depending on the number of trees specified (50-800). 


