Abstract
Purpose
In life cycle impact assessment, various proposals have been made on how to characterise fossil resource scarcity, but they lack appropriateness or completeness. In this paper, we propose a method to assess fossil resource scarcity based on surplus cost, which is the global future cost increase due to marginal fossil resource used in the life cycle of products.
Methods
The marginal cost increase (MCI in US dollars in the year 2008 per kilogram per kilogram produced) is calculated as an intermediate parameter for crude oil, natural gas and coal separately. Its calculations are based on production cost and cumulative future production per production technique or country. The surplus cost (SC in US dollars in the year 2008 per kilogram) is calculated as an indicator for fossil resource scarcity. The SC follows three different societal perspectives used to differentiate the subjective choices regarding discounting and future production scenarios.
Results and discussion
The hierarchist perspective SCs of crude oil, natural gas, and coal are 2.9, 1.5, and 0.033 US$2008/GJ, respectively. The ratios between the indicators of the different types of fossil resources (crude oil/natural gas/coal) are rather constant, except in the egalitarian perspective, where contrastingly no discounting is applied (egalitarian 100:47:21; hierarchist 100:53:1.1; individualist 100:34:0.6). The ratio of the MCIs (100:48:1.0) are similar to the individualist and hierarchist SC ratios.
Conclusions
In all perspectives, coal has a much lower resource scarcity impact factor per gigajoule and crude oil has the highest. In absolute terms of costs per heating value (US dollars in the year 2008 per gigajoule), there are large differences between the SCs for each perspective (egalitarian > hierarchist > individualist).






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- CF:
-
Characterisation factor
- LCA:
-
Life cycle assessment
- LCIA:
-
Life cycle impact assessment
- MCI:
-
Marginal cost increase
- SC:
-
Surplus cost
References
Anandarajah G, Pye S, Usher W, Kesicki F, McGlade C (2011) TIAM-UCL Global model documentation. Working Paper. February 2011: REF UKERC/WP/ESY/2011/001. University College London
Bentley RW (2002) Global oil and gas depletion: an overview. Energy Policy 30(3):189–205
Berger M, Finkbeiner M (2011) Correlation analysis of life cycle impact assessment indicators measuring resource use. Int J Life Cycle Assess 16(1):74–81
Beumer C, Martens P (2010) Noah’s ark or World Wild Web? Cultural perspectives in global scenario studies and their function for biodiversity conservation in a changing world. Sustainability 2(10):3211–3238
BGR (2010) Reserves, resources and availability of energy resources. Annual report 2010. Federal Institute for Geosciences and Natural Resources (BGR)
De Schryver AM, Van Zelm R, Humbert S, Pfister S, McKone TE, Huijbregts MAJ (2011) Value choices in life cycle impact assessment of stressors causing human health damage. J Ind Ecol 15(5):796–815
EC-JRC-IES (2011) International Reference Life Cycle Data System (ILCD) handbook—recommendations for life cycle impact assessment in the European context. First edition November 2011. European Commission-Joint Research Centre - Institute for Environment and Sustainability. Luxemburg. lct.jrc.ec.europa.eu/pdf-directory/Recommendation-of-methods-for-LCIA-def.pdf
Finnveden G (2005) The resource debate needs to continue. Int J Life Cycle Assess 10(5):372
Frischknecht R, Braunschweig A, Hofstetter P, Suter P (2000) Human health damages due to ionising radiation in life cycle impact assessment. Environ Impact Assess 20(2):159–189
Goedkoop M, De Schryver A (2009) Fossil Resource. Chapter 13 in. Goedkoop M, Heijungs R, Huijbregts MAJ, De Schryver A, Struijs J, Van Zelm R (eds) ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, first edition
Goedkoop M, Heijungs R, Huijbregts M, De Schryver AM, Struijs J, Van Zelm R (2008) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition Report I. Characterisation. Den Haag, The Netherlands, VROM
Gómez DR, Watterson JD, Americano BB, Ha C, Marland G, Matsika E, Namayanga LN, Osman-Elasha B, Saka JDK, Treanton K (2006) Stationery combustion, Chapter 2. Energy, Volume 2. In: IPCC (eds) 2006 IPCC Guidelines for National Greenhouse Gas Inventories
Guinée JB (ed), Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, Van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, De Bruijn JA, Van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Series: eco-efficiency in industry and science. Kluwer Academic Publishers. Dordrecht (Hardbound, ISBN 1-4020-0228-9; Paperback, ISBN 1-4020-0557-1)
Harrison M (2010) Valuing the future: the social discount rate in cost-benefit analysis, Visiting Researcher Paper. Productivity Commission, Canberra
Hauschild M, Potting J (2005) Spatial differentiation in life cycle impact assessment—the EDIP2003 methodology. Environmental News no. 80. The Danish Ministry of the Environment, Environmental Protection Agency, Copenhagen
Hauschild MZ, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697
Hellweg S, Hofstetter TB, Hungerbiihler K (2003) Discounting and the environment: should current impacts be weighted differently than impacts harming future generations? Int J Life Cycle Assess 8(1):8–18
Hof AF, den Elzen MGJ, van Vuuren DP (2008) Analysing the costs and benefits of climate policy: value judgements and scientific uncertainties. Glob Environ Chang 18(3):412–424
Hofstetter P (1998) Perspectives in life cycle impact assessment, a structure approach to combine models of the technosphere, ecosphere and valuesphere. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 484
Hofstetter P, Baumgartner T, Scholz RW (2000) Modelling the valuesphere and the ecosphere: integrating the decision makers’ perspectives into life cycle assessment. Int J Life Cycle Assess 5:161–175
Huijbregts MAJ, Hellweg S, Frischknecht R, Hungerbühler K, Jan Hendriks A (2008) Ecological footprint accounting in the life cycle assessment of products. Ecol Econ 64(4):798–807
IEA (2009a) World energy outlook 2009. OECD/IEA, Paris, France
IEA (2009b) Cleaner coal in China. OECD/IEA, Paris, France
IEA (2010) Resources to Reserves 2010. Oil, gas and coal technologies for the energy markets of the future. To be released Autumn 2010
IEA (2011a) Coal. Medium-term market report 2011. Market trends and projections to 2016. IEA, Paris, France
IEA (2011b) Key world energy statistics
IEA (2012) World energy outlook 2012. OECD/IEA, Paris, France
IHS (2011) Petrochemical Industry Overview. http://www.ihs.com/products/chemical/planning/ceh/petrochemical-industry.aspx Accessed April 2011
IPCC (2000) Emission scenarios. A special report of the IPCC working group III
Jackson T, Papathanasopoulou E (2008) Luxury or ‘lock-in’? An exploration of unsustainable consumption in the UK: 1968 to 2000. Ecol Econ 68(1–2):80–95
Jolliet O, Müller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Peña C, Pennington D, Potting J, Rebitzer G, Stewart M, De Haes HU, Weidema B (2004) The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. Int J Life Cycle Assess 9(6):394–404
Kapur A (2005) The future of red metal—scenario analysis. Futures 37(10):1067–1094
Lenzen M, Dey C, Foran B (2004) Energy requirements of Sydney households. Ecol Econ 49(3):375–399
Li H, Jenkins-Smith HC, Silva CL, Berrens RP, Herron KG (2009) Public support for reducing US reliance on fossil fuels: Investigating household willingness-to-pay for energy research and development. Ecol Econ 68(3):731–742
Lindeijer E, Müller-Wenk R, Steen B (2002) Impact assessment of resources and land use. In: Udo de Haes HA, Finnveden G, Goedkoop M, Hauschild M, Hertwich EG, Hofstetter P, Jolliet O, Klöpffer W, Krewitt W, Lindeijer EW, Müller-Wenk R, Olsen SI, Pennington DW, Potting J, Steen B (eds) Life-Cycle Impact Assessment: Striving towards best practice. SETAC-Press, Pensacola
McGlade C (2011) Uncertainties in the long term availability of crude oil. 34th IAEE International Conference Proceedings. http://www.hhs.se/IAEE-2011/Program/ConcurrentSessions/Documents/1%20online%20procedings/2147228%20Uncertainties%20in%20the%20long%20term%20availability%20of%20crude%20oil.pdf. Accessed 10 April 2012
Müller-Wenk R (1998) Depletion of abiotic resources weighted on base of “virtual” impacts of lower grade deposits used in future. IWO- Diskussionsbeitrag nr. 57. ISBN-Nr. 3-906502-57-0
R Development Core Team (2012) R: a language and environment for statistical computing, version 2.11.1 (2010-05-31). R Foundation for Statistical Computing: Vienna, Austria, 2012; http://www.R-project.org
Remme U, Blesl M, Fahl U (2007) Global resources and energy trade: an overview for coal, natural gas, oil and uranium. Universität Stuttgart. Institut für Energiewirtschaft und Rationelle Energieanwendung
Schneider L, Berger M, Finkbeiner M (2011) The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int J Life Cycle Assess 16(9):929–936
Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – Models and data of the default method. CPM report 1999:5. Chalmers University of Technology, Environmental Systems Analysis
Steen BA (2006) Abiotic resource depletion: different perceptions of the problem with mineral deposits. Int J Life Cycle Assess 11(1):49–54
Stewart M, Weidema BA (2005) Consistent framework for assessing the impacts from resource use: a focus on resource functionality. Int J Life Cycle Assess 10(4):240–247
Tilton JE (2003) On borrowed time? Assessing the threat of mineral depletion. Resources for the Future, Washington
Udo de Haes H, Jolliet O, Finnveden G, Hauschild M, Krewitt W, Müller-Wenk R (1999) Best available practice regarding impact categories and category indicators in life cycle impact assessment. Int J Life Cycle Assess 4(2):66–74
Van der Voet E (2013) Criticality and abiotic resource depletion in life cycle assessment. Chapter 5. In: Mancini L, De Camillis C, Pennington D (eds) Security of supply and scarcity of raw materials: towards a methodological framework for sustainability assessment. European Commission, Luxemburg
Vieira M, Storm P, Goedkoop M (2011) Stakeholder consultation: what do decision makers in public policy and industry want to know regarding abiotic resource use? In: Finkbeiner M (ed) Towards life cycle sustainability management. Springer, Dordrecht Heidelberg London New York
Weidema BP (2009) Using the budget constraint to monetarise impact assessment results. Ecol Econ 68(6):1591–1598
Weidema B, Finnveden G, Stewart M (2005) Impacts from resource use: a common position paper. Int J Life Cycle Assess 10(6):382
Yohe GW, Lasco RD, Ahmad QK, Arnell NW, Cohen SJ, Hope C, Janetos AC, Perez RT (2007) Perspectives on climate change and sustainability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 811–841
Acknowledgments
The research was funded by the European Commission under the 7th framework programme on environment; ENV.2009.3.3.2.1: LC-IMPACT - Improved Life Cycle Impact Assessment methods (LCIA) for better sustainability assessment of technologies, grant agreement number 243827. We thank Mark Huijbregts (Radboud University Nijmegen) for his valuable feedback on draft versions of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Göran Finnveden
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOCX 248 kb)
Rights and permissions
About this article
Cite this article
Ponsioen, T.C., Vieira, M.D.M. & Goedkoop, M.J. Surplus cost as a life cycle impact indicator for fossil resource scarcity. Int J Life Cycle Assess 19, 872–881 (2014). https://doi.org/10.1007/s11367-013-0676-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11367-013-0676-z