[go: up one dir, main page]

Skip to main content
Log in

An Improved Deep Clustering Model for Underwater Acoustical Targets

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Hand-craft features and clustering algorithms constitute the main parts of the unsupervised clustering system. Performance of the clustering deteriorates when the assumed probabilistic distribution of the data differs from the true one. This paper introduces a novel method that combines systematically the deep Boltzmann machine (DBM) with the Dirichlet process based Gaussian mixture model (DP-GMM) to bypass the problem of distribution mismatch. DBM is firstly used to extract the deep complex data features. By tactfully designing the distributions of different layers in DBM to make them compatible to that of the DP-GMM, we build a distribution consistent clustering system. The system is then jointly optimized by Markov chain Monte Carlo method with succinct updating formulations. The experimental results on two real databases of underwater acoustical target show the effectiveness and the robustness of the proposed clustering method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics, pp 1027–1035

  2. Bachem O, Lucic M, Hassani SH, Krause A (2016) Approximate k-means++ in sublinear time. In: AAAI, pp 1459–1467

  3. Biernacki C, Celeux G, Govaert G (2000) Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans Pattern Anal Mach Intell 22(7):719–725

    Article  Google Scholar 

  4. Bishop CM et al (2006) Pattern recognition and machine learning. Springer, New York, pp 4–12

    MATH  Google Scholar 

  5. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210

    Article  Google Scholar 

  6. Chandran C, Kamal S, Mujeeb A, Supriya M et al (2015) Novel class detection of underwater targets using self-organizing neural networks. In: Underwater technology (UT), 2015 IEEE. IEEE, pp 1–5

  7. Cipli G, Sattar F, Driessen PF (2015) Multi-class acoustic event classification of hydrophone data. In: Communications, computers and signal processing (PACRIM), 2015 IEEE Pacific Rim conference on. IEEE, pp 473–478

  8. Erhan D, Bengio Y, Courville A, Manzagol PA, Vincent P, Bengio S (2010) Why does unsupervised pre-training help deep learning? J Mach Learn Res 11(Feb):625–660

    MathSciNet  MATH  Google Scholar 

  9. Hinton G (2010) A practical guide to training restricted boltzmann machines. Momentum 9(1):926

    Google Scholar 

  10. Hong C, Yu J, Tao D, Wang M (2015) Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans Ind Electron 62(6):3742–3751

    Google Scholar 

  11. Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670

    Article  MathSciNet  Google Scholar 

  12. Jian L, Yang H, Zhong L, Ying X (2014) Underwater target recognition based on line spectrum and support vector machine. In: International conference on mechatronics, control and electronic engineering (MCE2014). Atlantis Press, pp 79–84

  13. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  14. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  15. Neal RM (2000) Markov chain sampling methods for Dirichlet process mixture models. J Comput Graph Stat 9(2):249–265

    MathSciNet  Google Scholar 

  16. Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

    Article  Google Scholar 

  17. Rasmussen CE (1999) The infinite Gaussian mixture model. NIPS 12:554–560

    Google Scholar 

  18. Salakhutdinov R, Hinton G (2012) An efficient learning procedure for deep Boltzmann machines. Neural Comput 24(8):1967–2006

    Article  MathSciNet  Google Scholar 

  19. Salakhutdinov R, Hinton GE (2009) Deep Boltzmann machines. Artif Intell Stat 1:448–455

    MATH  Google Scholar 

  20. Salakhutdinov R, Tenenbaum JB, Torralba A (2013) Learning with hierarchical-deep models. IEEE Trans Pattern Anal Mach Intell 35(8):1958–1971

    Article  Google Scholar 

  21. Su Y (2017) Robust video face recognition under pose variation. Neural Process Lett 1–15. https://doi.org/10.1007/s11063-017-9649-8

    Article  Google Scholar 

  22. Wang L, Zhao L, Bi G, Wan C, Zhang L, Zhang H (2016) Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors. IEEE Trans Signal Process 64(2):275–289

    Article  MathSciNet  Google Scholar 

  23. Yao X, Han J, Cheng G, Qian X, Guo L (2016) Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Trans Geosci Remote Sens 54(6):3660–3671

    Article  Google Scholar 

  24. Yu J, Yang X, Gao F, Tao D (2016) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern 47(12):4014–4024

    Article  Google Scholar 

  25. Yu J, Zhang B, Kuang Z, Lin D, Fan J (2017) iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans Inf Forensics Secur 12(5):1005–1016

    Article  Google Scholar 

  26. Zhang D, Han J, Han J, Shao L (2016) Cosaliency detection based on intrasaliency prior transfer and deep intersaliency mining. IEEE Trans Neural Netw Learn Syst 27(6):1163–1176

    Article  MathSciNet  Google Scholar 

  27. Zhang D, Han J, Li C, Wang J, Li X (2016) Detection of co-salient objects by looking deep and wide. Int J Comput Vis 120(2):215–232

    Article  MathSciNet  Google Scholar 

  28. Zhang D, Han J, Jiang L, Ye S, Chang X (2017) Revealing event saliency in unconstrained video collection. IEEE Trans Image Process 26(4):1746–1758

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants 61501375, 11774291 and 11374241 and by the Fundamental Research Funds for the Central Universities under Grant 3102016ZY006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, L., Zeng, X. et al. An Improved Deep Clustering Model for Underwater Acoustical Targets. Neural Process Lett 48, 1633–1644 (2018). https://doi.org/10.1007/s11063-017-9755-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9755-7

Keywords

Navigation