[go: up one dir, main page]

Skip to main content
Log in

Emergent gravity as the eraser of anomalous gauge boson masses, and QFT-GR concord

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the same base setup as Sakharov’s induced gravity, we investigate emergence of gravity in effective quantum field theories (QFT), with particular emphasis on the gauge sector in which gauge bosons acquire anomalous masses in proportion to the ultraviolet cutoff \(\varLambda _\wp \). Drawing on the fact that \(\varLambda _\wp ^2\) corrections explicitly break the gauge and Poincare symmetries, we find that it is possible to map \(\varLambda _\wp ^2\) to spacetime curvature as a covariance relation and we find also that this map erases the anomalous gauge boson masses. The resulting framework describes gravity by the general relativity (GR) and matter by the QFT itself with \(\log \varLambda _\wp \) corrections (dimensional regularization). This QFT-GR concord predicts existence of new physics beyond the Standard Model such that the new physics can be a weakly-interacting or even a non-interacting sector comprising the dark matter, dark energy and possibly more. The concord has consequential implications for collider, astrophysical and cosmological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ’t Hooft, G., Veltman, M.: Ann. Inst. H. Poincare Phys. Theor. A 20, 69-94 (1974)

  2. ’t Hooft, G.: Stud. Hist. Phil. Sci. B 32, 157 (2001)

  3. Stelle, K.: Phys. Rev. D 16, 953–969 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hedrich, R.: Phys. Philos. 2010, 016 (2010). [arXiv:0908.0355 [gr-qc]]

    Google Scholar 

  5. Schulz, B.: Review on the quantization of gravity, arXiv:1409.7977 [gr-qc]

  6. Casares, P. A. M.: [arXiv:1808.01252 [gr-qc]]

  7. Donoghue, J.F.: Phys. Rev. Lett. 72, 2996–2999 (1994). [arXiv:gr-qc/9310024 [gr-qc]]

    Article  ADS  Google Scholar 

  8. Donoghue, J.F.: Phys. Rev. D 50, 3874–3888 (1994). [arXiv:gr-qc/9405057 [gr-qc]]

    Article  ADS  Google Scholar 

  9. Odintsov, S.D., Shapiro, I.L.: Class. Quantum Grav. 9, 873–882 (1992)

    Article  ADS  Google Scholar 

  10. Holdom, B., Ren, J.: Int. J. Mod. Phys. D 25, 1643004 (2016). [arXiv:1605.05006 [hep-th]]

    Article  ADS  Google Scholar 

  11. Shaposhnikov, M., Wetterich, C.: Phys. Lett. B 683, 196–200 (2010). [arXiv:0912.0208 [hep-th]]

    Article  ADS  Google Scholar 

  12. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  13. Wald, R.M.: Quantum Field Theory in Curved Space-time and Black Hole Thermodynamics. University of Chicago Presss, Chicago (1995)

    Google Scholar 

  14. Parker, L., Toms, D.: Quantum Field Theory in Curved Spacetime. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  15. Mattingly, J.: Einstein Stud. 11, 327 (2005)

    MathSciNet  Google Scholar 

  16. Carlip, S.: Class. Quantum Grav. 25, 154010 (2008). [arXiv:0803.3456 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  17. Boughn, S.: Found. Phys. 39, 331 (2009). [arXiv:0809.4218 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  18. Fulling, S.A.: Phys. Rev. D 7, 2850 (1973)

    Article  ADS  Google Scholar 

  19. DeWitt, B.S.: Phys. Rep. 19, 295–357 (1975)

    Article  ADS  Google Scholar 

  20. Woodard, R.P.: Rep. Prog. Phys. 72, 126002 (2009). [arXiv:0907.4238 [gr-qc]]

    Article  ADS  Google Scholar 

  21. Hawking, S.W.: Nature 248, 30–31 (1974)

    Article  ADS  Google Scholar 

  22. Hollands, S.: Commun. Math. Phys. 273, 1–36 (2007). [arXiv:gr-qc/0605072 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  23. Hollands, S., Wald, R.M.: Gen. Rel. Grav. 40, 2051–2059 (2008). [arXiv:0805.3419 [gr-qc]]

    Article  ADS  Google Scholar 

  24. Hollands, S., Wald, R.M.: Phys. Rep. 574, 1–35 (2015). [arXiv:1401.2026 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  25. Brunetti, R., Fredenhagen, K., Kohler, M.: Commun. Math. Phys. 180, 633–652 (1996). [arXiv:gr-qc/9510056 [gr-qc]]

    Article  ADS  Google Scholar 

  26. Brunetti, R., Fredenhagen, K., Kohler, M.: Commun. Math. Phys. 208, 623–661 (2000). [arXiv:math-ph/9903028 [math-ph]]

    Article  ADS  Google Scholar 

  27. Fredenhagen, K.: Locally covariant quantum field theory, [arXiv:hep-th/0403007 [hep-th]]

  28. Brunetti, R., Fredenhagen, K., Rejzner, K.: Commun. Math. Phys. 345, 741–779 (2016). [arXiv:1306.1058 [math-ph]]

    Article  ADS  Google Scholar 

  29. Fredenhagen, K., Rejzner, K.: J. Math. Phys. 57, 031101 (2016). [arXiv:1412.5125 [math-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  30. Hollands, S.: Commun. Math. Phys. 244, 209–244 (2004). [arXiv:gr-qc/0212028 [gr-qc]]

    Article  ADS  Google Scholar 

  31. Hollands, S., Wald, R.M.: Commun. Math. Phys. 293, 85–125 (2010). [arXiv:0803.2003 [gr-qc]]

    Article  ADS  Google Scholar 

  32. Bardeen, W.A.: On naturalness in the standard model, FERMILAB-CONF-95-391-T (1995)

  33. Meissner, K.A., Nicolai, H.: Phys. Lett. B 648, 312–317 (2007). [arXiv:hep-th/0612165 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  34. Tavares, G Marques, Schmaltz, M., Skiba, W.: Phys. Rev. D 89, 015009 (2014). [arXiv:1308.0025 [hep-ph]]

    Article  ADS  Google Scholar 

  35. Wald, R.M.: Einstein Stud. 14, 439 (2018). [arXiv:0907.0416 [gr-qc]]

    Article  Google Scholar 

  36. Ashtekar, A., Magnon, A.: Proc. R. Soc. Lond. A 346, 375 (1975)

    Article  ADS  Google Scholar 

  37. Sakharov, A.D.: Dokl. Akad. Nauk Ser. Fiz. 177, 70 (1967)

    ADS  Google Scholar 

  38. Sakharov, A.D.: Sov. Phys. Usp. 34, 394 (1991)

    Article  ADS  Google Scholar 

  39. Sakharov, A.D.: Gen. Rel. Grav. 32, 365 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  40. Ruzmaikina, T.V., Ruzmaikin, A.A., Eksp, Zh: Teor. Fiz. 57, 680 (1969)

    Google Scholar 

  41. Ruzmaikina, T.V., Ruzmaikin, A.A.: Sov. Phys. JETP 30, 372 (1970)

    ADS  Google Scholar 

  42. Visser, M.: Mod. Phys. Lett. A 17, 977 (2002). [arXiv:gr-qc/0204062]

  43. Demir, D.A.: A Mechanism of Ultraviolet Naturalness, arXiv:1510.05570 [hep-ph]

  44. Demir, D.: Naturalizing Gravity of the Quantum Fields, and the Hierarchy Problem, arXiv:1703.05733 [hep-ph]

  45. Frolov, V.P., Fursaev, D.V., Zelnikov, A.I.: Nucl. Phys. B 486, 339–352 (1997). [arXiv:hep-th/9607104 [hep-th]]

    Article  ADS  Google Scholar 

  46. Frolov, V.P., Fursaev, D.V.: Phys. Rev. D 56, 2212–2225 (1997). [arXiv:hep-th/9703178 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  47. Frolov, V.P., Fursaev, D.V.: Plenty of nothing: Black hole entropy in induced gravity, [arXiv:hep-th/9705207 [hep-th]]

  48. Frolov, V.P., Fursaev, D., Zelnikov, A.: JHEP 03, 038 (2003). [arXiv:hep-th/0302207 [hep-th]]

    Article  ADS  Google Scholar 

  49. Frolov, V.P., Fursaev, D., Gegenberg, J., Kunstatter, G.: Phys. Rev. D 60, 024016 (1999). [arXiv:hep-th/9901087 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  50. Verlinde, E.P.: JHEP 1104, 029 (2011). [arXiv:1001.0785 [hep-th]]

    Article  ADS  Google Scholar 

  51. Van Raamsdonk, M.: Comments on quantum gravity and entanglement, arXiv:0907.2939 [hep-th]

  52. Van Raamsdonk, M.: Gen. Rel. Grav. 42, 2323 (2010)

    Article  ADS  Google Scholar 

  53. Van Raamsdonk, M.: Int. J. Mod. Phys. D 19, 2429 (2010). [arXiv:1005.3035 [hep-th]]

    Article  ADS  Google Scholar 

  54. Barcelo, C., Liberati, S., Visser, M.: Living Rev. Rel. 8, 12 (2005). [arXiv:gr-qc/0505065 [gr-qc]]

    Article  Google Scholar 

  55. Zee, A.: Phys. Rev. Lett. 42, 417 (1979)

    Article  ADS  Google Scholar 

  56. Adler, S.L.: Phys. Lett. B 95, 241 (1980)

    Article  ADS  Google Scholar 

  57. Zee, A.: Phys. Rev. D 23, 858 (1981)

    Article  ADS  Google Scholar 

  58. Adler, S.L.: Rev. Mod. Phys. 54, 729 (1982)

    Article  ADS  Google Scholar 

  59. Zee, A.: Ann. Phys. 151, 431 (1983)

    Article  ADS  Google Scholar 

  60. Shapiro, I.L.: Mod. Phys. Lett. A 9, 1985–1990 (1994). [arXiv:hep-th/9403077 [hep-th]]

    Article  ADS  Google Scholar 

  61. Shapiro, I.L., Cognola, G.: Phys. Rev. D 51, 2775–2781 (1995). [arXiv:hep-th/9406027 [hep-th]]

    Article  ADS  Google Scholar 

  62. Donoghue, J.F., Menezes, G.: Phys. Rev. D 97, 056022 (2018). [arXiv:1712.04468 [hep-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  63. Donoghue, J.F., Menezes, G.: Phys. Rev. D 97, 126005 (2018). [arXiv:1804.04980 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  64. Terazawa, H., Chikashige, Y., Akama, K., Matsuki, T.: Phys. Rev. D 15, 1181 (1977)

    Article  ADS  Google Scholar 

  65. Akama, K., Chikashige, Y., Matsuki, T., Terazawa, H.: Prog. Theor. Phys. 60, 868 (1978)

    Article  ADS  Google Scholar 

  66. Salvio, A., Strumia, A.: JHEP 06, 080 (2014). [arXiv:1403.4226 [hep-ph]]

    Article  ADS  Google Scholar 

  67. Carlip, S.: Stud. Hist. Philos. Sci. B 46, 200 (2014). [arXiv:1207.2504 [gr-qc]]

    Google Scholar 

  68. Veltman, M.J.G.: Acta Phys. Polon. B 12, 437 (1981)

    Google Scholar 

  69. Giudice, G.F.: PoS EPS 163 (2013). [arXiv:1307.7879 [hep-ph]]

  70. Masina, I., Nardini, G., Quiros, M.: Phys. Rev. D 92, 035003 (2015). [arXiv:1502.06525 [hep-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  71. Zeldovich, Y.B.: JETP Lett. 6, 316 (1967)

    ADS  Google Scholar 

  72. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  73. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)

    Google Scholar 

  74. Chankowski, P.H., Lewandowski, A., Meissner, K.A.: Acta Phys. Polon. B 48, 5 (2017). [arXiv:1608.01214 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  75. Demir, D.: Adv. High Energy Phys. 2019, 4652048 (2019). [arXiv:1901.07244 [hep-ph]]

    Article  Google Scholar 

  76. Wigner, E.P.: Ann. Math. 40, 149 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  77. Bargmann, V., Wigner, E.P.: Proc. Natl. Acad. Sci. USA 34, 211 (1948)

    Article  ADS  Google Scholar 

  78. Bollini, C., Giambiagi, J.: Nuovo Cim. B 12, 20–26 (1972)

    Article  Google Scholar 

  79. ’t Hooft, G., Veltman, M.: Nucl. Phys. B 44 (1972), 189-213

  80. Alvarez-Gaume, L., Ginsparg, P.H.: Ann. Phys. 161, 423 (1985)

    Article  ADS  Google Scholar 

  81. Adler, S.L.: Anomalies, [arXiv:hep-th/0411038 [hep-th]]

  82. Bilal, A.: Lectures on Anomalies, [arXiv:0802.0634 [hep-th]]

  83. Demir, D.A.: Adv. High Energy Phys. 2016, 6727805 (2016). [arXiv:1605.00377 [hep-ph]]

    Article  Google Scholar 

  84. Hagiwara, K., Ishihara, S., Szalapski, R., Zeppenfeld, D.: Phys. Rev. D 48, 2182 (1993)

    Article  ADS  Google Scholar 

  85. Cynolter, G., Lendvai, E.: Cutoff Regularization Method in Gauge Theories, arXiv:1509.07407 [hep-ph]

  86. Starobinsky, A.A.: Phys. Lett. 91B, 99 (1980)

    Article  ADS  Google Scholar 

  87. Akrami, Y., et al.: [Planck Collaboration], Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [astro-ph.CO]

  88. Aghanim, N., et al.: [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters, [arXiv:1807.06209 [astro-ph.CO]]

  89. Barbieri, R., Strumia, A.: The ’LEP paradox’, arXiv:hep-ph/0007265

  90. Birkedal, A., Chacko, Z., Gaillard, M.K.: JHEP 0410, 036 (2004). [arXiv:hep-ph/0404197]

  91. Gell-Mann, M., Goldberger, M.L.: Phys. Rev. 91, 398–408 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  92. Horwitz, L.P., Lavie, Y.: Phys. Rev. D 26, 819 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  93. Zerzion, D., Horwitz, L.P., Arshansky, R.I.: J. Math. Phys. 32, 1788–1795 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  94. Faraoni, V.: Phys. Rev. D 53, 6813 (1996). [arXiv:astro-ph/9602111]

  95. Ren, J., Xianyu, Z.Z., He, H.J.: JCAP 1406, 032 (2014). [arXiv:1404.4627 [gr-qc]]

    Article  ADS  Google Scholar 

  96. Demir, D.A.: Phys. Lett. B 733, 237 (2014). [arXiv:1405.0300 [hep-ph]]

    Article  ADS  Google Scholar 

  97. Mohr, P.J., Newell, D.B., Taylor, B.N.: Rev. Mod. Phys. 88, 035009 (2016). [arXiv:1507.07956 [physics.atom-ph]]

    Article  ADS  Google Scholar 

  98. Rubin, D., Heitlauf, J.: Is the expansion of the universe accelerating? All signs still point to yes a local dipole anisotropy cannot explain dark energy, arXiv:1912.02191 [astro-ph.CO]

  99. Beacham, J., et al.: J. Phys. G 47, 010501 (2020). [arXiv:1901.09966 [hep-ex]]

    Article  ADS  Google Scholar 

  100. Arkani-Hamed, N., Maldacena, J.: Cosmological Collider Physics, arXiv:1503.08043 [hep-th]

  101. Baudis, L.: Eur. Rev. 26, 70 (2018). [arXiv:1801.08128 [astro-ph.CO]]

    Article  Google Scholar 

  102. Abada, A., et al.: [FCC], Eur. Phys. J. C 79, 474 (2019)

  103. Boveia, A., Doglioni, C.: Ann. Rev. Nucl. Part. Sci. 68, 429 (2018). [arXiv:1810.12238 [hep-ex]]

    Article  ADS  Google Scholar 

  104. Polchinski, J.: Nucl. Phys. B 231, 269 (1984)

    Article  ADS  Google Scholar 

  105. Burgess, C.: Ann. Rev. Nucl. Part. Sci. 57, 329–362 (2007). [arXiv:hep-th/0701053 [hep-th]]

    Article  ADS  Google Scholar 

  106. Weinberg, S.: Int. J. Mod. Phys. A 31, 1630007 (2016)

    Article  ADS  Google Scholar 

  107. Brivio, I., Trott, M.: Phys. Rep. 793, 1 (2019). [arXiv:1706.08945 [hep-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  108. Casas, J., Lleyda, A., Munoz, C.: Nucl. Phys. B 471, 3–58 (1996). [arXiv:hep-ph/9507294 [hep-ph]]

  109. Landau, L.D., Lifshitz, E.M.: Classical Theory of Fields. Pergamon Press, New York (1971)

    MATH  Google Scholar 

  110. Norton, J.D.: Rep. Prog. Phys. 56, 791458 (1993)

    Article  Google Scholar 

  111. Kretschmann, E.: Annalen der Physik 48, 907 (1915)

    Article  ADS  Google Scholar 

  112. Einstein, A.: Ann. Phys. 53, 575 (1917)

    Google Scholar 

  113. Sorkin, R.D.: Mod. Phys. Lett. A 17, 695 (2002)

    Article  ADS  Google Scholar 

  114. Bauer, F., Demir, D.A.: Phys. Lett. B 665, 222 (2008). [arXiv:0803.2664 [hep-ph]]

    Article  ADS  Google Scholar 

  115. Karahan, C.N., Altas, A., Demir, D.A.: Gen. Rel. Grav. 45, 319 (2013). [arXiv:1110.5168 [gr-qc]]

    Article  ADS  Google Scholar 

  116. Azri, H., Demir, D.: Phys. Rev. D 95, 124007 (2017). [arXiv:1705.05822 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  117. Romano, J.D.: Gen. Rel. Grav. 25, 759 (1993). [arXiv:gr-qc/9303032]

  118. Vitagliano, V., Sotiriou, T.P., Liberati, S.: Annals Phys. 326, 1259 (2011) Erratum: [Annals Phys. 329, 186 (2013)] [arXiv:1008.0171 [gr-qc]]

  119. Iosifidis, D.: Class. Quantum Grav. 36, 085001 (2019). [arXiv:1812.04031 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  120. Sakstein, J.: JCAP 1412, 012 (2014). [arXiv:1409.1734 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  121. Papadopoulos, V., Zarei, M., Firouzjahi, H., Mukohyama, S.: Phys. Rev. D 97, 063521 (2018). [arXiv:1801.00227 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  122. Shimada, K., Aoki, K., Maeda, K.I.: Phys. Rev. D 99, 104020 (2019). [arXiv:1812.03420 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  123. Will, C.M.: Einstein Stud. 14, 81–96 (2018)

    Article  Google Scholar 

  124. Ferreira, P.G.: Ann. Rev. Astron. Astrophys. 57, 335–374 (2019). [arXiv:1902.10503 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  125. Utiyama, R., DeWitt, B.S.: J. Math. Phys. 3, 608 (1962)

    Article  ADS  Google Scholar 

  126. Salam, A., Strathdee, J.A.: Phys. Rev. D 18, 4480 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  127. Peebles, P., Vilenkin, A.: Phys. Rev. D 60, 103506 (1999). [arXiv:astro-ph/9904396 [astro-ph]]

    Article  ADS  Google Scholar 

  128. Tang, Y., Wu, Y.L.: Phys. Lett. B 758, 402 (2016). [arXiv:1604.04701 [hep-ph]]

    Article  ADS  Google Scholar 

  129. Ema, Y., Nakayama, K., Tang, Y.: arXiv:1804.07471 [hep-ph]

  130. Cankoçak, K., Demir, D., Karahan, C., Şen, S.: Electroweak Stability and Discovery Luminosities for New Physics, [arXiv:2002.12262 [hep-ph]]

  131. Demir, D., Ün, C.S.: Scalar Dark Matter and Electroweak Stability, [arXiv:2005.03589 [hep-ph]]

  132. Çimdiker, İİ.: Phys. Dark Univ. 30, 100736 (2020)

    Article  Google Scholar 

  133. Bezrukov, F.L., Shaposhnikov, M.: Phys. Lett. B 659, 703 (2008). [arXiv:0710.3755 [hep-th]]

    Article  ADS  Google Scholar 

  134. Bauer, F., Demir, D.A.: Phys. Lett. B 698, 425 (2011). [arXiv:1012.2900 [hep-ph]]

    Article  ADS  Google Scholar 

  135. Arkani-Hamed, N., Dimopoulos, S., Dvali, G., Gabadadze, G.: Nonlocal modification of gravity and the cosmological constant problem, [arXiv:hep-th/0209227 [hep-th]]

  136. Dvali, G., Hofmann, S., Khoury, J.: Phys. Rev. D 76, 084006 (2007). [arXiv:hep-th/0703027 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  137. Demir, D.A.: Found. Phys. 39, 1407–1425 (2009). [arXiv:0910.2730 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  138. Demir, D.A.: Phys. Lett. B 701, 496 (2011). [arXiv:1102.2276 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  139. Csaki, C., Grojean, C., Terning, J.: Rev. Mod. Phys. 88, 045001 (2016). [arXiv:1512.00468 [hep-ph]]

    Article  ADS  Google Scholar 

  140. Csaki, C., Tanedo, P.: Beyond the Standard Model. arXiv:1602.04228 [hep-ph]

  141. Masina, I., Quiros, M.: Phys. Rev. D 88, 093003 (2013). [arXiv:1308.1242 [hep-ph]]

    Article  ADS  Google Scholar 

  142. Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Phys. Rep. 258, 1 (1995). [arXiv:gr-qc/9402012]

  143. Chaichian, M., Oksanen, M., Tureanu, A.: Sakharov?s Induced Gravity and the Poincare Gauge Theory, [arXiv:1805.03148 [hep-th]]

  144. Eddington, A.S.: Proc. R. Soc. Lond. A99, 742 (1919)

    Google Scholar 

  145. Schroedinger, E.: Space-Time Structure. Cambridge University Press, Cambridge (1950)

    Google Scholar 

  146. Kijowski, J., Werpachowski, R.: Rep. Math. Phys. 59, 1 (2007). [arXiv:gr-qc/0406088]

  147. Poplawski, N.J.: Found. Phys. 39, 307 (2009). [arXiv:gr-qc/0701176 [GR-QC]]

    Article  ADS  MathSciNet  Google Scholar 

  148. Demir, D.A., Dogangun, O., Rador, T., Soysal, S.: arXiv:1105.4750 [hep-th]

  149. Demir, D.A.: Phys. Rev. D 90, 064017 (2014). [arXiv:1409.2572 [gr-qc]]

    Article  ADS  Google Scholar 

  150. Azri, H., Demir, D.: Phys. Rev. D 95, 124007 (2017). [arXiv:1705.05822 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  151. Azri, H.: [arXiv:1805.03936 [gr-qc]]

  152. Martellini, M.: Phys. Rev. Lett. 51, 152–155 (1983)

    Article  ADS  Google Scholar 

  153. Martellini, M.: Phys. Rev. D 29, 2746–2755 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  154. Hehl, F.W.: Einstein Stud. 13, 145–169 (2017). [arXiv:1204.3672 [gr-qc]]

    Article  Google Scholar 

  155. Blagojevic, M., Hehl, F.W.: Gauge Theories of Gravitation, [arXiv:1210.3775 [gr-qc]]

  156. Lovas, R.O., Pek, J., Szilasi, J.: Adv. Stud. Pure Math. 48, 263 (2007)

    Article  Google Scholar 

  157. Shiohama, K., Tiwari, B.: The global study of Riemannian-Finsler geometry, [arXiv:1811.11552 [math.DG]]

  158. Chacko, Z., Goh, H.S., Harnik, R.: Phys. Rev. Lett. 96, 231802 (2006). [arXiv:hep-ph/0506256 [hep-ph]]

    Article  ADS  Google Scholar 

  159. Haber, H.E., Nir, Y.: Nucl. Phys. B 335, 363–394 (1990)

    Article  ADS  Google Scholar 

  160. Ginzburg, I.F., Krawczyk, M.: Phys. Rev. D 72, 115013 (2005). [arXiv:hep-ph/0408011 [hep-ph]]

    Article  ADS  Google Scholar 

  161. Branco, G., Ferreira, P., Lavoura, L., Rebelo, M., Sher, M., Silva, J.P.: Phys. Rep. 516, 1–102 (2012). [arXiv:1106.0034 [hep-ph]]

    Article  ADS  Google Scholar 

  162. Verde, L., Treu, T., Riess, A.: Nat. Astron. 3, 891 (2019). [arXiv:1907.10625 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  163. Arapoglu, A., Deliduman, C., Eksi, K.: JCAP 07, 020 (2011). [arXiv:1003.3179 [gr-qc]]

    Article  ADS  Google Scholar 

  164. Kase, R., Tsujikawa, S.: JCAP 09, 054 (2019). [arXiv:1906.08954 [gr-qc]]

    Article  ADS  Google Scholar 

  165. Bambi, C.: Ann. Phys. 530, 1700430 (2018). [arXiv:1711.10256 [gr-qc]]

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the TÜBİTAK grant 118F387.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durmuş Demir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, D. Emergent gravity as the eraser of anomalous gauge boson masses, and QFT-GR concord. Gen Relativ Gravit 53, 22 (2021). https://doi.org/10.1007/s10714-021-02797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02797-0

Keywords

Navigation