Abstract
In the same base setup as Sakharov’s induced gravity, we investigate emergence of gravity in effective quantum field theories (QFT), with particular emphasis on the gauge sector in which gauge bosons acquire anomalous masses in proportion to the ultraviolet cutoff \(\varLambda _\wp \). Drawing on the fact that \(\varLambda _\wp ^2\) corrections explicitly break the gauge and Poincare symmetries, we find that it is possible to map \(\varLambda _\wp ^2\) to spacetime curvature as a covariance relation and we find also that this map erases the anomalous gauge boson masses. The resulting framework describes gravity by the general relativity (GR) and matter by the QFT itself with \(\log \varLambda _\wp \) corrections (dimensional regularization). This QFT-GR concord predicts existence of new physics beyond the Standard Model such that the new physics can be a weakly-interacting or even a non-interacting sector comprising the dark matter, dark energy and possibly more. The concord has consequential implications for collider, astrophysical and cosmological phenomena.
Similar content being viewed by others
References
’t Hooft, G., Veltman, M.: Ann. Inst. H. Poincare Phys. Theor. A 20, 69-94 (1974)
’t Hooft, G.: Stud. Hist. Phil. Sci. B 32, 157 (2001)
Stelle, K.: Phys. Rev. D 16, 953–969 (1977)
Hedrich, R.: Phys. Philos. 2010, 016 (2010). [arXiv:0908.0355 [gr-qc]]
Schulz, B.: Review on the quantization of gravity, arXiv:1409.7977 [gr-qc]
Casares, P. A. M.: [arXiv:1808.01252 [gr-qc]]
Donoghue, J.F.: Phys. Rev. Lett. 72, 2996–2999 (1994). [arXiv:gr-qc/9310024 [gr-qc]]
Donoghue, J.F.: Phys. Rev. D 50, 3874–3888 (1994). [arXiv:gr-qc/9405057 [gr-qc]]
Odintsov, S.D., Shapiro, I.L.: Class. Quantum Grav. 9, 873–882 (1992)
Holdom, B., Ren, J.: Int. J. Mod. Phys. D 25, 1643004 (2016). [arXiv:1605.05006 [hep-th]]
Shaposhnikov, M., Wetterich, C.: Phys. Lett. B 683, 196–200 (2010). [arXiv:0912.0208 [hep-th]]
Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)
Wald, R.M.: Quantum Field Theory in Curved Space-time and Black Hole Thermodynamics. University of Chicago Presss, Chicago (1995)
Parker, L., Toms, D.: Quantum Field Theory in Curved Spacetime. Cambridge University Press, Cambridge (2009)
Mattingly, J.: Einstein Stud. 11, 327 (2005)
Carlip, S.: Class. Quantum Grav. 25, 154010 (2008). [arXiv:0803.3456 [gr-qc]]
Boughn, S.: Found. Phys. 39, 331 (2009). [arXiv:0809.4218 [gr-qc]]
Fulling, S.A.: Phys. Rev. D 7, 2850 (1973)
DeWitt, B.S.: Phys. Rep. 19, 295–357 (1975)
Woodard, R.P.: Rep. Prog. Phys. 72, 126002 (2009). [arXiv:0907.4238 [gr-qc]]
Hawking, S.W.: Nature 248, 30–31 (1974)
Hollands, S.: Commun. Math. Phys. 273, 1–36 (2007). [arXiv:gr-qc/0605072 [gr-qc]]
Hollands, S., Wald, R.M.: Gen. Rel. Grav. 40, 2051–2059 (2008). [arXiv:0805.3419 [gr-qc]]
Hollands, S., Wald, R.M.: Phys. Rep. 574, 1–35 (2015). [arXiv:1401.2026 [gr-qc]]
Brunetti, R., Fredenhagen, K., Kohler, M.: Commun. Math. Phys. 180, 633–652 (1996). [arXiv:gr-qc/9510056 [gr-qc]]
Brunetti, R., Fredenhagen, K., Kohler, M.: Commun. Math. Phys. 208, 623–661 (2000). [arXiv:math-ph/9903028 [math-ph]]
Fredenhagen, K.: Locally covariant quantum field theory, [arXiv:hep-th/0403007 [hep-th]]
Brunetti, R., Fredenhagen, K., Rejzner, K.: Commun. Math. Phys. 345, 741–779 (2016). [arXiv:1306.1058 [math-ph]]
Fredenhagen, K., Rejzner, K.: J. Math. Phys. 57, 031101 (2016). [arXiv:1412.5125 [math-ph]]
Hollands, S.: Commun. Math. Phys. 244, 209–244 (2004). [arXiv:gr-qc/0212028 [gr-qc]]
Hollands, S., Wald, R.M.: Commun. Math. Phys. 293, 85–125 (2010). [arXiv:0803.2003 [gr-qc]]
Bardeen, W.A.: On naturalness in the standard model, FERMILAB-CONF-95-391-T (1995)
Meissner, K.A., Nicolai, H.: Phys. Lett. B 648, 312–317 (2007). [arXiv:hep-th/0612165 [hep-th]]
Tavares, G Marques, Schmaltz, M., Skiba, W.: Phys. Rev. D 89, 015009 (2014). [arXiv:1308.0025 [hep-ph]]
Wald, R.M.: Einstein Stud. 14, 439 (2018). [arXiv:0907.0416 [gr-qc]]
Ashtekar, A., Magnon, A.: Proc. R. Soc. Lond. A 346, 375 (1975)
Sakharov, A.D.: Dokl. Akad. Nauk Ser. Fiz. 177, 70 (1967)
Sakharov, A.D.: Sov. Phys. Usp. 34, 394 (1991)
Sakharov, A.D.: Gen. Rel. Grav. 32, 365 (2000)
Ruzmaikina, T.V., Ruzmaikin, A.A., Eksp, Zh: Teor. Fiz. 57, 680 (1969)
Ruzmaikina, T.V., Ruzmaikin, A.A.: Sov. Phys. JETP 30, 372 (1970)
Visser, M.: Mod. Phys. Lett. A 17, 977 (2002). [arXiv:gr-qc/0204062]
Demir, D.A.: A Mechanism of Ultraviolet Naturalness, arXiv:1510.05570 [hep-ph]
Demir, D.: Naturalizing Gravity of the Quantum Fields, and the Hierarchy Problem, arXiv:1703.05733 [hep-ph]
Frolov, V.P., Fursaev, D.V., Zelnikov, A.I.: Nucl. Phys. B 486, 339–352 (1997). [arXiv:hep-th/9607104 [hep-th]]
Frolov, V.P., Fursaev, D.V.: Phys. Rev. D 56, 2212–2225 (1997). [arXiv:hep-th/9703178 [hep-th]]
Frolov, V.P., Fursaev, D.V.: Plenty of nothing: Black hole entropy in induced gravity, [arXiv:hep-th/9705207 [hep-th]]
Frolov, V.P., Fursaev, D., Zelnikov, A.: JHEP 03, 038 (2003). [arXiv:hep-th/0302207 [hep-th]]
Frolov, V.P., Fursaev, D., Gegenberg, J., Kunstatter, G.: Phys. Rev. D 60, 024016 (1999). [arXiv:hep-th/9901087 [hep-th]]
Verlinde, E.P.: JHEP 1104, 029 (2011). [arXiv:1001.0785 [hep-th]]
Van Raamsdonk, M.: Comments on quantum gravity and entanglement, arXiv:0907.2939 [hep-th]
Van Raamsdonk, M.: Gen. Rel. Grav. 42, 2323 (2010)
Van Raamsdonk, M.: Int. J. Mod. Phys. D 19, 2429 (2010). [arXiv:1005.3035 [hep-th]]
Barcelo, C., Liberati, S., Visser, M.: Living Rev. Rel. 8, 12 (2005). [arXiv:gr-qc/0505065 [gr-qc]]
Zee, A.: Phys. Rev. Lett. 42, 417 (1979)
Adler, S.L.: Phys. Lett. B 95, 241 (1980)
Zee, A.: Phys. Rev. D 23, 858 (1981)
Adler, S.L.: Rev. Mod. Phys. 54, 729 (1982)
Zee, A.: Ann. Phys. 151, 431 (1983)
Shapiro, I.L.: Mod. Phys. Lett. A 9, 1985–1990 (1994). [arXiv:hep-th/9403077 [hep-th]]
Shapiro, I.L., Cognola, G.: Phys. Rev. D 51, 2775–2781 (1995). [arXiv:hep-th/9406027 [hep-th]]
Donoghue, J.F., Menezes, G.: Phys. Rev. D 97, 056022 (2018). [arXiv:1712.04468 [hep-ph]]
Donoghue, J.F., Menezes, G.: Phys. Rev. D 97, 126005 (2018). [arXiv:1804.04980 [hep-th]]
Terazawa, H., Chikashige, Y., Akama, K., Matsuki, T.: Phys. Rev. D 15, 1181 (1977)
Akama, K., Chikashige, Y., Matsuki, T., Terazawa, H.: Prog. Theor. Phys. 60, 868 (1978)
Salvio, A., Strumia, A.: JHEP 06, 080 (2014). [arXiv:1403.4226 [hep-ph]]
Carlip, S.: Stud. Hist. Philos. Sci. B 46, 200 (2014). [arXiv:1207.2504 [gr-qc]]
Veltman, M.J.G.: Acta Phys. Polon. B 12, 437 (1981)
Giudice, G.F.: PoS EPS 163 (2013). [arXiv:1307.7879 [hep-ph]]
Masina, I., Nardini, G., Quiros, M.: Phys. Rev. D 92, 035003 (2015). [arXiv:1502.06525 [hep-ph]]
Zeldovich, Y.B.: JETP Lett. 6, 316 (1967)
Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)
Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)
Chankowski, P.H., Lewandowski, A., Meissner, K.A.: Acta Phys. Polon. B 48, 5 (2017). [arXiv:1608.01214 [hep-th]]
Demir, D.: Adv. High Energy Phys. 2019, 4652048 (2019). [arXiv:1901.07244 [hep-ph]]
Wigner, E.P.: Ann. Math. 40, 149 (1939)
Bargmann, V., Wigner, E.P.: Proc. Natl. Acad. Sci. USA 34, 211 (1948)
Bollini, C., Giambiagi, J.: Nuovo Cim. B 12, 20–26 (1972)
’t Hooft, G., Veltman, M.: Nucl. Phys. B 44 (1972), 189-213
Alvarez-Gaume, L., Ginsparg, P.H.: Ann. Phys. 161, 423 (1985)
Adler, S.L.: Anomalies, [arXiv:hep-th/0411038 [hep-th]]
Bilal, A.: Lectures on Anomalies, [arXiv:0802.0634 [hep-th]]
Demir, D.A.: Adv. High Energy Phys. 2016, 6727805 (2016). [arXiv:1605.00377 [hep-ph]]
Hagiwara, K., Ishihara, S., Szalapski, R., Zeppenfeld, D.: Phys. Rev. D 48, 2182 (1993)
Cynolter, G., Lendvai, E.: Cutoff Regularization Method in Gauge Theories, arXiv:1509.07407 [hep-ph]
Starobinsky, A.A.: Phys. Lett. 91B, 99 (1980)
Akrami, Y., et al.: [Planck Collaboration], Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [astro-ph.CO]
Aghanim, N., et al.: [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters, [arXiv:1807.06209 [astro-ph.CO]]
Barbieri, R., Strumia, A.: The ’LEP paradox’, arXiv:hep-ph/0007265
Birkedal, A., Chacko, Z., Gaillard, M.K.: JHEP 0410, 036 (2004). [arXiv:hep-ph/0404197]
Gell-Mann, M., Goldberger, M.L.: Phys. Rev. 91, 398–408 (1953)
Horwitz, L.P., Lavie, Y.: Phys. Rev. D 26, 819 (1982)
Zerzion, D., Horwitz, L.P., Arshansky, R.I.: J. Math. Phys. 32, 1788–1795 (1991)
Faraoni, V.: Phys. Rev. D 53, 6813 (1996). [arXiv:astro-ph/9602111]
Ren, J., Xianyu, Z.Z., He, H.J.: JCAP 1406, 032 (2014). [arXiv:1404.4627 [gr-qc]]
Demir, D.A.: Phys. Lett. B 733, 237 (2014). [arXiv:1405.0300 [hep-ph]]
Mohr, P.J., Newell, D.B., Taylor, B.N.: Rev. Mod. Phys. 88, 035009 (2016). [arXiv:1507.07956 [physics.atom-ph]]
Rubin, D., Heitlauf, J.: Is the expansion of the universe accelerating? All signs still point to yes a local dipole anisotropy cannot explain dark energy, arXiv:1912.02191 [astro-ph.CO]
Beacham, J., et al.: J. Phys. G 47, 010501 (2020). [arXiv:1901.09966 [hep-ex]]
Arkani-Hamed, N., Maldacena, J.: Cosmological Collider Physics, arXiv:1503.08043 [hep-th]
Baudis, L.: Eur. Rev. 26, 70 (2018). [arXiv:1801.08128 [astro-ph.CO]]
Abada, A., et al.: [FCC], Eur. Phys. J. C 79, 474 (2019)
Boveia, A., Doglioni, C.: Ann. Rev. Nucl. Part. Sci. 68, 429 (2018). [arXiv:1810.12238 [hep-ex]]
Polchinski, J.: Nucl. Phys. B 231, 269 (1984)
Burgess, C.: Ann. Rev. Nucl. Part. Sci. 57, 329–362 (2007). [arXiv:hep-th/0701053 [hep-th]]
Weinberg, S.: Int. J. Mod. Phys. A 31, 1630007 (2016)
Brivio, I., Trott, M.: Phys. Rep. 793, 1 (2019). [arXiv:1706.08945 [hep-ph]]
Casas, J., Lleyda, A., Munoz, C.: Nucl. Phys. B 471, 3–58 (1996). [arXiv:hep-ph/9507294 [hep-ph]]
Landau, L.D., Lifshitz, E.M.: Classical Theory of Fields. Pergamon Press, New York (1971)
Norton, J.D.: Rep. Prog. Phys. 56, 791458 (1993)
Kretschmann, E.: Annalen der Physik 48, 907 (1915)
Einstein, A.: Ann. Phys. 53, 575 (1917)
Sorkin, R.D.: Mod. Phys. Lett. A 17, 695 (2002)
Bauer, F., Demir, D.A.: Phys. Lett. B 665, 222 (2008). [arXiv:0803.2664 [hep-ph]]
Karahan, C.N., Altas, A., Demir, D.A.: Gen. Rel. Grav. 45, 319 (2013). [arXiv:1110.5168 [gr-qc]]
Azri, H., Demir, D.: Phys. Rev. D 95, 124007 (2017). [arXiv:1705.05822 [gr-qc]]
Romano, J.D.: Gen. Rel. Grav. 25, 759 (1993). [arXiv:gr-qc/9303032]
Vitagliano, V., Sotiriou, T.P., Liberati, S.: Annals Phys. 326, 1259 (2011) Erratum: [Annals Phys. 329, 186 (2013)] [arXiv:1008.0171 [gr-qc]]
Iosifidis, D.: Class. Quantum Grav. 36, 085001 (2019). [arXiv:1812.04031 [gr-qc]]
Sakstein, J.: JCAP 1412, 012 (2014). [arXiv:1409.1734 [astro-ph.CO]]
Papadopoulos, V., Zarei, M., Firouzjahi, H., Mukohyama, S.: Phys. Rev. D 97, 063521 (2018). [arXiv:1801.00227 [hep-th]]
Shimada, K., Aoki, K., Maeda, K.I.: Phys. Rev. D 99, 104020 (2019). [arXiv:1812.03420 [gr-qc]]
Will, C.M.: Einstein Stud. 14, 81–96 (2018)
Ferreira, P.G.: Ann. Rev. Astron. Astrophys. 57, 335–374 (2019). [arXiv:1902.10503 [astro-ph.CO]]
Utiyama, R., DeWitt, B.S.: J. Math. Phys. 3, 608 (1962)
Salam, A., Strathdee, J.A.: Phys. Rev. D 18, 4480 (1978)
Peebles, P., Vilenkin, A.: Phys. Rev. D 60, 103506 (1999). [arXiv:astro-ph/9904396 [astro-ph]]
Tang, Y., Wu, Y.L.: Phys. Lett. B 758, 402 (2016). [arXiv:1604.04701 [hep-ph]]
Ema, Y., Nakayama, K., Tang, Y.: arXiv:1804.07471 [hep-ph]
Cankoçak, K., Demir, D., Karahan, C., Şen, S.: Electroweak Stability and Discovery Luminosities for New Physics, [arXiv:2002.12262 [hep-ph]]
Demir, D., Ün, C.S.: Scalar Dark Matter and Electroweak Stability, [arXiv:2005.03589 [hep-ph]]
Çimdiker, İİ.: Phys. Dark Univ. 30, 100736 (2020)
Bezrukov, F.L., Shaposhnikov, M.: Phys. Lett. B 659, 703 (2008). [arXiv:0710.3755 [hep-th]]
Bauer, F., Demir, D.A.: Phys. Lett. B 698, 425 (2011). [arXiv:1012.2900 [hep-ph]]
Arkani-Hamed, N., Dimopoulos, S., Dvali, G., Gabadadze, G.: Nonlocal modification of gravity and the cosmological constant problem, [arXiv:hep-th/0209227 [hep-th]]
Dvali, G., Hofmann, S., Khoury, J.: Phys. Rev. D 76, 084006 (2007). [arXiv:hep-th/0703027 [hep-th]]
Demir, D.A.: Found. Phys. 39, 1407–1425 (2009). [arXiv:0910.2730 [hep-th]]
Demir, D.A.: Phys. Lett. B 701, 496 (2011). [arXiv:1102.2276 [hep-th]]
Csaki, C., Grojean, C., Terning, J.: Rev. Mod. Phys. 88, 045001 (2016). [arXiv:1512.00468 [hep-ph]]
Csaki, C., Tanedo, P.: Beyond the Standard Model. arXiv:1602.04228 [hep-ph]
Masina, I., Quiros, M.: Phys. Rev. D 88, 093003 (2013). [arXiv:1308.1242 [hep-ph]]
Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Phys. Rep. 258, 1 (1995). [arXiv:gr-qc/9402012]
Chaichian, M., Oksanen, M., Tureanu, A.: Sakharov?s Induced Gravity and the Poincare Gauge Theory, [arXiv:1805.03148 [hep-th]]
Eddington, A.S.: Proc. R. Soc. Lond. A99, 742 (1919)
Schroedinger, E.: Space-Time Structure. Cambridge University Press, Cambridge (1950)
Kijowski, J., Werpachowski, R.: Rep. Math. Phys. 59, 1 (2007). [arXiv:gr-qc/0406088]
Poplawski, N.J.: Found. Phys. 39, 307 (2009). [arXiv:gr-qc/0701176 [GR-QC]]
Demir, D.A., Dogangun, O., Rador, T., Soysal, S.: arXiv:1105.4750 [hep-th]
Demir, D.A.: Phys. Rev. D 90, 064017 (2014). [arXiv:1409.2572 [gr-qc]]
Azri, H., Demir, D.: Phys. Rev. D 95, 124007 (2017). [arXiv:1705.05822 [gr-qc]]
Azri, H.: [arXiv:1805.03936 [gr-qc]]
Martellini, M.: Phys. Rev. Lett. 51, 152–155 (1983)
Martellini, M.: Phys. Rev. D 29, 2746–2755 (1984)
Hehl, F.W.: Einstein Stud. 13, 145–169 (2017). [arXiv:1204.3672 [gr-qc]]
Blagojevic, M., Hehl, F.W.: Gauge Theories of Gravitation, [arXiv:1210.3775 [gr-qc]]
Lovas, R.O., Pek, J., Szilasi, J.: Adv. Stud. Pure Math. 48, 263 (2007)
Shiohama, K., Tiwari, B.: The global study of Riemannian-Finsler geometry, [arXiv:1811.11552 [math.DG]]
Chacko, Z., Goh, H.S., Harnik, R.: Phys. Rev. Lett. 96, 231802 (2006). [arXiv:hep-ph/0506256 [hep-ph]]
Haber, H.E., Nir, Y.: Nucl. Phys. B 335, 363–394 (1990)
Ginzburg, I.F., Krawczyk, M.: Phys. Rev. D 72, 115013 (2005). [arXiv:hep-ph/0408011 [hep-ph]]
Branco, G., Ferreira, P., Lavoura, L., Rebelo, M., Sher, M., Silva, J.P.: Phys. Rep. 516, 1–102 (2012). [arXiv:1106.0034 [hep-ph]]
Verde, L., Treu, T., Riess, A.: Nat. Astron. 3, 891 (2019). [arXiv:1907.10625 [astro-ph.CO]]
Arapoglu, A., Deliduman, C., Eksi, K.: JCAP 07, 020 (2011). [arXiv:1003.3179 [gr-qc]]
Kase, R., Tsujikawa, S.: JCAP 09, 054 (2019). [arXiv:1906.08954 [gr-qc]]
Bambi, C.: Ann. Phys. 530, 1700430 (2018). [arXiv:1711.10256 [gr-qc]]
Acknowledgements
This work is supported in part by the TÜBİTAK grant 118F387.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Demir, D. Emergent gravity as the eraser of anomalous gauge boson masses, and QFT-GR concord. Gen Relativ Gravit 53, 22 (2021). https://doi.org/10.1007/s10714-021-02797-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10714-021-02797-0