[go: up one dir, main page]

Skip to main content
Log in

Radial asymptotics of Lemaître–Tolman–Bondi dust models

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We examine the radial asymptotic behavior of spherically symmetric Lemaître–Tolman–Bondi dust models by looking at their covariant scalars along radial rays, which are spacelike geodesics parametrized by proper length , orthogonal to the 4-velocity and to the orbits of SO(3). By introducing quasi-local scalars defined as integral functions along the rays, we obtain a complete and covariant representation of the models, leading to an initial value parametrization in which all scalars can be given by scaling laws depending on two metric scale factors and two basic initial value functions. Considering regular “open” LTB models whose space slices allow for a diverging , we provide the conditions on the radial coordinate so that its asymptotic limit corresponds to the limit as → ∞. The “asymptotic state” is then defined as this limit, together with asymptotic series expansion around it, evaluated for all metric functions, covariant scalars (local and quasi-local) and their fluctuations. By looking at different sets of initial conditions, we examine and classify the asymptotic states of parabolic, hyperbolic and open elliptic models admitting a symmetry center. We show that in the radial direction the models can be asymptotic to any one of the following spacetimes: FLRW dust cosmologies with zero or negative spatial curvature, sections of Minkowski flat space (including Milne’s space), sections of the Schwarzschild–Kruskal manifold or self-similar dust solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lemaître G.: Ann. Soc. Sci. Brux. A 53, 51 (1933)

    Google Scholar 

  2. Lemaître G.: Gen. Relativ. Gravit. 29, 5 (1997)

    Article  Google Scholar 

  3. Tolman R.C.: Proc. Natl. Acad. Sci. 20, 169 (1934)

    Article  ADS  Google Scholar 

  4. Bondi H.: Mon. Not. R. Astron. Soc. 107, 410 (1947)

    MATH  MathSciNet  ADS  Google Scholar 

  5. Krasiński A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  6. Plebanski J., Krasinski A.: An Introduction to General Relativity and Cosmology. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  7. Krasiński A., Hellaby C.: Phys. Rev. D 65, 023501 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  8. Krasiński A., Hellaby C.: Phys. Rev. D 69, 023502 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  9. Krasiński A., Hellaby C.: Phys. Rev. D 69, 043502 (2004)

    Article  ADS  Google Scholar 

  10. Hellaby C., Krasiński A.: Phys. Rev. D 73, 023518 (2006)

    Article  ADS  Google Scholar 

  11. Matravers D.R., Humphreys N.P.: Gen. Relativ. Gravit. 33, 53152 (2001)

    MathSciNet  Google Scholar 

  12. Humphreys, N.P., Maartens, R., Matravers, D.R.: Regular Spherical Dust Spacetimes (1998). Preprint gr-qc/9804023v1

  13. Bolejko K., Krasiński A., Hellaby C.: MNRAS 362, 213–228 (2005)

    Article  ADS  Google Scholar 

  14. Eardley D.M.: Commun. Math. Phys. 37, 287 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  15. Eardley D.M., Smarr L.: Phys. Rev. D 19, 2239 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  16. Dyer C.C.: MNRAS 189, 189 (1979)

    MathSciNet  ADS  Google Scholar 

  17. Waugh B., Lake K.: Phys. Rev. D 38, 1315 (1988)

    Article  ADS  Google Scholar 

  18. Waugh B., Lake K.: Phys. Rev. D 40, 2137 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  19. Lemos J.P.S.: Phys. Lett. A 158, 279 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  20. Joshi P.S., Dwivedi I.H.: Phys. Rev. D 47, 5357 (1993)

    Article  ADS  Google Scholar 

  21. Joshi P.S., Singh T.P.: Phys. Rev. D 51, 6778 (1995)

    Article  ADS  Google Scholar 

  22. Dwivedi I.H., Joshi P.S.: Class. Quant. Grav. 47, 5357 (1997)

    MathSciNet  Google Scholar 

  23. Vaz C., Witten L., Singh T.P.: Phys. Rev. D 63, 104020 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  24. Kiefer C., Mueller-Hill, Vaz C.: Phys. Rev. D 73, 044025 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  25. Bojowald M., Harada T., Tibrewala R.: Phys. Rev. D 78, 064057 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. Pascual-Sánchez J.F.: Mod. Phys. Lett. A 14, 1539 (1999)

    Article  ADS  Google Scholar 

  27. Sugiura N.K., Harada T.: Phys. Rev. D 60, 103508 (1999)

    Article  ADS  Google Scholar 

  28. Celerièr M.N.: Astron. Astrophys. 353, 63 (2000)

    ADS  Google Scholar 

  29. Tomita K.: MNRAS 326, 287 (2001)

    Article  ADS  Google Scholar 

  30. Iguchi H., Nakamura T., Nakao K.: Prog. Theor. Phys. 108, 809 (2002)

    Article  MATH  ADS  Google Scholar 

  31. Schwarz, D.J.: Accelerated Expansion Without Dark Energy (2002). Preprint arXiv:astro-ph/02095 84v2

  32. Apostolopoulos P. et al.: JCAP P 06, 009 (2006)

    ADS  Google Scholar 

  33. Kai T., Kozaki H., Nakao K., Nambu Y., Yoo C.M.: Prog. Theor. Phys. 117, 229–240 (2007) Preprint arXiv:gr-qc/0605120

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Mattsson T., Ronkainen M.: JCAP 0802, 004 (2008) Preprint arXiv:astro-ph/0708.3673v2

    ADS  Google Scholar 

  35. Bolejko K., Andersson L.: JCAP 10, 003 (2008) Preprint arXiv:0807.3577

    ADS  Google Scholar 

  36. Kolb E.W., Matarrese S., Notari A., Riotto A.: Phys. Rev. D 71, 023524 (2005) Preprint arXiv:hep-ph/0409038v2

    Article  ADS  Google Scholar 

  37. Marra V., Kolb E.W., Matarrese S.: Phys. Rev. D 77, 023003 (2008)

    Article  ADS  Google Scholar 

  38. Marra V., Kolb E.W., Matarrese S., Riotto A.: Phys. Rev. D 76, 123004 (2007)

    Article  ADS  Google Scholar 

  39. García-Bellido J., Troels H.: JCAP 0804, 003 (2008) Preprint gr-qc/0802.1523v3 [astro-ph]

    ADS  Google Scholar 

  40. Moffat, J.W.: J. Cosmol. Astropart. Phys. JCAP 001 (2006)

  41. Alnes H., Amazguioui M., Gron O.: Phys. Rev. D 73, 083519 (2006)

    Article  ADS  Google Scholar 

  42. Alnes H., Amazguioui M.: Phys. Rev. D 74, 103520 (2006)

    Article  ADS  Google Scholar 

  43. Alnes H., Amazguioui M.: Phys. Rev. D 75, 023506 (2006)

    Article  ADS  Google Scholar 

  44. Rasanen S.: Class. Quant. Grav. 23, 1823–1835 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  45. Enqvist K., Mattsson T.: JCAP 0702, 019 (2007) Preprint arXiv:astro-ph/0609120v4

    ADS  Google Scholar 

  46. Enqvist K.: Gen. Relativ. Gravit. 40, 451–466 (2008) Preprint arXiv:0709.2044

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Chuang C.H., Gu J.A., Hwang W.Y.P.: Class. Quant. Grav. 25, 175001 (2005) Preprint astro-ph/0512651

    Article  MathSciNet  ADS  Google Scholar 

  48. Paranjape A., Singh T.P.: Class. Quant. Grav. 23, 69556969 (2006)

    MathSciNet  Google Scholar 

  49. Sussman, R.A.: On Spatial Volume Averaging in Lematre–Tolman–Bondi Dust Models. Part I: Back Reaction, Spacial Curvature and Binding Energy (2008). Preprint arXiv:0807.1145

  50. Sussman, R.A.: Quasi-local Variables and Scalar Averaging in LTB Dust Models (2009). Preprint arXiv:0912.4074

  51. Buchert T.: Gen. Relativ. Gravit. 9, 306–321 (2000) Preprint arXiv:gr-qc/0001056v1

    MathSciNet  Google Scholar 

  52. Buchert T.: Gen. Relativ. Gravit. 40, 467 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Celerièr, M.N.: New Advances in Physics, vol. 1, p. 29 (2007). Preprint arXiv:astro-ph/0702416

  54. Wainwright J., Andrews S.: Class. Quant. Grav. 26, 085017 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  55. Sussman R.A., García-Trujillo L.: Class. Quant. Grav. 19, 2897–2925 (2002)

    Article  MATH  ADS  Google Scholar 

  56. Sussman, R.A.: Quasi-local variables and inhomogeneous cosmological sources with spherical symmetry 2008. In: AIP Conf. Proc. 1083, 228–235 (2007). Preprint arXiv:0810.1120

  57. Sussman R.A.: Class. Quant. Grav. 25, 015012 (2008) Preprint arXiv:grqc/0709.1005

    Article  MathSciNet  Google Scholar 

  58. Sussman R.A.: Phys. Rev. D 79, 025009 (2009)

    Article  ADS  Google Scholar 

  59. Sussman, R.A. A New Approach for Doing Theoretical and Numeric Work with Lemaître–Tolman–Bondi Dust Models (2010). Preprint arXiv:1001.0904v1

  60. Ellis G.F.R., Bruni M.: Phys. Rev. D 40, 1804 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  61. Ellis, G.F.R., van Elst, H.: Cosmological Models (Cargèse Lectures 1998) (1998). Preprint arXiv: gr-qc/9812046 v4

  62. van Elst H., Ellis G.F.R.: Class. Quant. Grav. 13, 1099–1128 (1996) Preprint arXiv:gr-qc/9510044

    Article  MATH  ADS  Google Scholar 

  63. Hayward S.A.: Phys. Rev. D 53, 1938 (1996) Preprint arXiv:gr-qc/9408002

    Article  MathSciNet  ADS  Google Scholar 

  64. Hayward S.A.: Class. Quant. Grav. 15, 31473162 (1998) Preprint arXiv:gr-qc/9710089v2

    MathSciNet  Google Scholar 

  65. Hellaby C., Lake K.: Astrophys. J. 290, 381 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  66. Carr B.J.: Phys. Rev. D 62, 044062 (2000)

    ADS  Google Scholar 

  67. Ellis G.F.R:. In: Bertotti, B., de Felice, F., Pacolini, A. (eds) General Relativity and Gravitation, pp. 215–288. Reidel, Dordrecht (1984)

  68. Wiltshire D.: New J. Phys. 9, 377 (2007) Preprint arXiv: gr-qc/0702082v4

    Article  ADS  Google Scholar 

  69. Moffat J.W., Tatarski D.C.: Astrophys. J. 453, 17 (1995)

    Article  ADS  Google Scholar 

  70. Humphreys N., Maartens R., Matravers D.: Astrophys. J. 477, 47 (1997)

    Article  ADS  Google Scholar 

  71. Ehlers J.: Gen. Relativ. Gravit. 25, 1225 (1993) (translation of original 1961 article)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  72. Sussman, R.A.: Evolution of radial profiles in regular Lemaî tre–Tolman–Bondi dust models. Class. Quant. Grav. (2010). Preprint arXiv:1005.0717 (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto A. Sussman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sussman, R.A. Radial asymptotics of Lemaître–Tolman–Bondi dust models. Gen Relativ Gravit 42, 2813–2864 (2010). https://doi.org/10.1007/s10714-010-1029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1029-x

Keywords

Navigation