[go: up one dir, main page]

Skip to main content

Advertisement

Log in

The composition of cultivable bacteria, bacterial pollution, and environmental variables of the coastal areas: an example from the Southeastern Black Sea, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The composition and metabolic properties of cultivable heterotrophic aerobic bacteria, the levels of indicator bacteria, and physicochemical parameters were investigated in the seawater samples collected from 20 stations in coastal areas of the eastern part of the Black Sea, Turkey, between May 2017 and February 2018. The levels of indicator bacteria were detected above the national limit values during the study period. Thirty-five different bacterium species were identified. Enterobacteriaceae was recorded as the most dominant family (34.2%), and Gammaproteobacteria was recorded as the most dominant class (74.2%). Bacteriological threats on human and ecosystem health were determined in coastal areas of the Southeastern Black Sea. The determination of the high levels of indicator bacteria, the high ratio of fecal coliform/fecal streptococci (FC/FS ratio), and pathogenic bacteria regarding human and ecosystem health showed that these coastal areas under the influences of terrestrial and human-sourced bacteriological pollution. This study has contributed to the increase of knowledge of understanding the protection and rehabilitation ways of the Black Sea coastal regions against land-based pollution sources considering the interdependent structure of all Black Sea countries. Coastal areas are accepted as the most fragile part of the marine environments and our findings showed the potential bacteriological risks in coastal areas of the Southeastern Black Sea as an important example. Serious precautions should be taken for the protection in this area and such coastal ecosystems to prevent hazardous problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akkan, T., (2013). Determination of the seasonal changes in seawater quality in Giresun coastline. Ph.D. dissertation, Ondokuz Mayıs University, Institute of Graduate Studies in science and engineering, 354472.

  • Akkan, T., & Mutlu, C. (2016). Determination of antibiotics resistance levels in Enterobacteriaceae isolated from Giresun coasts. Turkish Journal of Agriculture-Food Science and Technology, 4(8), 640–650. https://doi.org/10.24925/turjaf.v4i8.640-650.721.

    Article  Google Scholar 

  • Alderkamp, A. C., van Rijssel, M., & Bolhuis, H. (2007). Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin. FEMS Microbiology Ecology, 59, 108–117. https://doi.org/10.1111/j.1574-6941.2006.00219.x.

    Article  CAS  Google Scholar 

  • Alkan, N., Alkan, A., Akbaş, U., & Fisher, A. (2015). Metal pollution assessment in sediments of the southeastern Black Sea coast of Turkey. Soil and Sediment Contamination: An International Journal, 24(3), 290–305. https://doi.org/10.1080/15320383.2015.950723.

    Article  CAS  Google Scholar 

  • Alm, E. W., Burke, J., & Spain, A. (2003). Fecal indicator bacteria are abundant in wet sand at freshwater beaches. Water Research, 37(16), 3978–3982. https://doi.org/10.1016/S0043-1354(03)00301-4.

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association). (2012). Standard methods for the examination of water and wastewater (22th ed.) United States, Washington.

  • Apple, J. K., Smith, E. M., & Boyd, T. J. (2008). Temperature, salinity, nutrients, and the covariation of bacterial production and chlorophyll-a in estuarine ecosystems. Journal of Coastal Research, 55, 59–75. https://doi.org/10.2112/SI55-005.1.

    Article  CAS  Google Scholar 

  • Arnosti, C., & Holmer, M. (1999). Carbohydrate dynamics and contributions to the carbon budget of an organic-rich coastal sediment. Geochimica et Cosmochimica Acta, 63, 393–403. https://doi.org/10.1016/S0016-7037(99)00076-9.

    Article  CAS  Google Scholar 

  • Aytan, Ü., Feyzioglu, A. M., Valente, A., Ağirbaş, E., & Fileman, E. S. (2018). Microbial plankton communities in the coastal southeastern Black Sea: biomass, composition and trophic interactions. Oceanologia, 60, 139–152. https://doi.org/10.1016/j.oceano.2017.09.002.

    Article  Google Scholar 

  • Aytan, U., Sahin, F. B. E., & Karacan, F. (2019). Beach litter on Sarayköy Beach (SE Black Sea): density, composition, possible sources and associated organisms. Turkish Journal of Fisheries and Aquatic Sciences, 20(2). https://doi.org/10.4194/1303-2712-v20_2_06.

  • Azam, F., & Cho, B. C. (1987). Bacterial utilization of organic matter in the sea. In M. Fletcher (Ed.), Ecology of microbial communities (pp. 261–268). Cambridge: Cambridge University Press.

    Google Scholar 

  • Azam, F., & Hodson, R. E. (1981). Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria. Marine Ecology Progress Series, 6, 213–222.

    Article  CAS  Google Scholar 

  • Azam, F., & Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5, 782–791. https://doi.org/10.1038/nrmicro1747.

    Article  CAS  Google Scholar 

  • Bakan, G., & Büyükgüngör, H. (2000). The Black Sea. Marine Pollution Bulletin, 41, 24–43. https://doi.org/10.1016/S0025-326X(00)00100-4.

    Article  CAS  Google Scholar 

  • Bat, L., Öztekin, A., Şahin, F., Arıcı, E., & Özsandıkçı, U. (2018). An overview of the Black Sea pollution in Turkey. Mediterranean Fisheries and Aquaculture Research, 1(2), 66–86.

  • Bathing Water Quality Directive of Turkey, (2006) Ministry of environment and forestry, the council directive 76/160/EU, official gazette No. 26048 dated 09.01.2006 (in Turkish).

  • Benner, R., Pakulski, J. D., McCarty, M., Hedges, J. I., & Hatcher, P. G. (1992). Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 255, 1561–1564. https://doi.org/10.1126/science.255.5051.1561.

    Article  CAS  Google Scholar 

  • Berkun, M., & Aras, E. (2007). Wastewater and waste-generated pollution at the southeastern Black Sea region. Environmental Engineering Science, 24(6), 778–789. https://doi.org/10.1089/ees.2006.0129.

    Article  CAS  Google Scholar 

  • Burton, G., Blenden, D. C., & Goldberg, H. S. (1970). Naphthylamidase activity of Leptospira. Journal of Applied Microbiology, 19(ss), 586–588.

    Article  CAS  Google Scholar 

  • Cabelli, V. J. (1983). Health effects criteria for marine waters, EPA-600/1-80-031. Cincinnati, Ohio: U.S. Environmental Protection Agency.

    Google Scholar 

  • Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., & Wardle, D. A. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67. https://doi.org/10.1038/nature11148.

    Article  CAS  Google Scholar 

  • Caudill, M. T., Budnick, J. A., Sheehan, L. M., Lehman, C. R., Purwantini, E., Mukhopadhyay, B., & Caswell. (2017). Proline utilization system is required for infection by the pathogenic alpha-proteobacterium Brucella abortus. Microbiology, 163, 970–979. https://doi.org/10.1099/mic.0.000490.

    Article  CAS  Google Scholar 

  • Cavallo, R. A., Rizzi, C., Vozza, T., & Stabili, L. (1999). Viable heterotrophic bacteria in water and sediment in Mar Piccolo of Taranto (Ionian Sea, Italy). Journal of Applied Microbiology, 86, 906–916. https://doi.org/10.1046/j.1365-2672.1999.00767.x.

    Article  CAS  Google Scholar 

  • Christgen, S. L., & Becker, D. F. (2017). Role of proline in pathogen and host interactions. Antioxidants & Redox Signaling, 30(4), 683–709. https://doi.org/10.1089/ars.2017.7335.

    Article  CAS  Google Scholar 

  • Cicin-Sain, B., Balgos, M., Appiott, J., Wowk, K., & Hamon, G. (2011). Oceans at Rio+20: how well are we doing in meeting the commitments from the 1992 earth summit and the 2002 world summit on sustainable development? Summary for decision makers. United Nations Development Programme Reports, USA, Global Ocean Forum. https://www.undp.org/content/undp/en/home/librarypage/environment-energy/water_governance/ocean_and_coastalareagovernance/oceans_at_rio_20howwellarewedoinginmeetingthecommitmentsfromthe1.html. Accessed 21 Feb 2020.

  • Çolakoğlu, F., (2007). Characterization of antibiotic resistance in enteric bacteria which are isolated from seawater in Rize city coast, M.Sc. thesis, Karadeniz Technical University, Institute of Graduate Studies in Science and Engineering, 212028.

  • Cowie, G. L., & Hedges, J. I. (1984). Carbohydrate sources in a coastal marine environment. Geochimica et Cosmochimica Acta, 48, 2075–2087. https://doi.org/10.1016/0016-7037(84)90388-0.

    Article  CAS  Google Scholar 

  • Curtis, J., Shearer, G., & Kohl, D. H. (2004). Bacteriod proline catabolism affects N2 fixation rate of drought-stressed soybeans. Plant Physiology, 136, 3313–3318. https://doi.org/10.1104/pp.104.044024.

    Article  CAS  Google Scholar 

  • Danulat, E., Muniz, P., García-Alonso, J., & Yannicelli, B. (2002). First assessment of the highly contaminated harbor of Montevideo, Uruguay. Marine Pollution Bulletin, 44, 554–565. https://doi.org/10.1016/S0025-326X(02)00086-3.

    Article  CAS  Google Scholar 

  • Delong, E. F. (2007). Modern microbial seascapes. Nature Reviews Microbiology, 5(10), 755–757. https://doi.org/10.1038/nrmicro1762.

    Article  CAS  Google Scholar 

  • Delong, E. F., & Karl, D. M. (2005). Genomic perspectives in microbial oceanography. Nature, 437, 336–342. https://doi.org/10.1038/nature04157.

    Article  CAS  Google Scholar 

  • Dorak, M. T. (2006). Real-time PCR (BIOS advanced method series). Oxford, Taylor & Francis, UK.

  • Dufour, A. P. (1984). Health effects criteria for fresh recreational waters, EPA-600/1-84-004. Cincinnati, Ohio: U.S. Environmental Protection Agency.

    Google Scholar 

  • Edwards, U., Rogall, T., Blöcker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17(19), 7843–7853. https://doi.org/10.1093/nar/17.19.7843.

    Article  CAS  Google Scholar 

  • EPA. (2012). Recreational water quality criteria. EPA-820-F-12-058, U.S. Washington, D.C.: Environmental Protection Agency.

    Google Scholar 

  • Fabiano, M., & Danovaro, R. (1998). Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antarctica). Applied and Environmental Microbiology, 64, 3838–3845. https://doi.org/10.1128/AEM.64.10.3838-3845.1998.

    Article  CAS  Google Scholar 

  • Fraenkel, D. G., & Vinopal, R. T. (1973). Carbohydrate metabolism in bacteria. Annual Review of Microbiology, 27, 69–100. https://doi.org/10.1146/annurev.mi.27.100173.000441.

    Article  CAS  Google Scholar 

  • Fuhrman, J. A., & Azam, F. (1980). Bacterioplankton secondary production estimates for coastal waters of British Columbia, Canada, Antarctica, and California, USA. Applied and Environmental Microbiology, 39, 1085–1095.

    Article  CAS  Google Scholar 

  • Fukasawa, K., Hiraoka, B. Y., Fukasawa, K. M., & Harada, M. (1982). Arylamidase activities specific for Proline, tyrosine, and basic amino acid residues in some oral bacteria. Journal of Dental Research, 61(6), 818–820. https://doi.org/10.1177/00220345820610063501.

    Article  CAS  Google Scholar 

  • Ge, R., Sun, X., Xiao, C., Yin, X., Shan, W., Chen, Z., & He, Q. Y. (2011). Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. Proteomics, 11(8), 1449–1461. https://doi.org/10.1002/pmic.201000649.

    Article  CAS  Google Scholar 

  • Gedik, K. (2018). Bioaccessibility of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in Mediterranean mussel (Mytilus galloprovincialis Lamarck, 1819) along the southeastern Black Sea coast. Human and Ecological Risk Assessment: An International Journal, 24(3), 754–766. https://doi.org/10.1080/10807039.2017.1398632.

    Article  CAS  Google Scholar 

  • Gedik, K., Boran, M., & Alkan, N. (2014). Determination of oil and domestic pollution indicators on the south-eastern Black Sea coastal water. Indian Journal of Geo-Marine Sciences, 43(5), 799–804.

    Google Scholar 

  • Geldreich, E. E. (1976). Fecal coliform and fecal streptococcus density relationships in waste discharges and receiving waters. Critical Review of Environmental Control, 6, 349–369. https://doi.org/10.1080/10643387609381645.

    Article  Google Scholar 

  • Geldreich, E. E., & Kenner, B. A. (1969). Concepts of fecal streptococci in stream pollution. Journal of the Water Pollution Control Federation, 41(8), 336–R352.

    Google Scholar 

  • Gerba, C. P. (2000). Assessment of enteric pathogen shedding by bathers during recreational activity and its impact on water quality. Quantitative Microbiology, 2(1), 55–68. https://doi.org/10.1023/A:1010000230103.

    Article  Google Scholar 

  • Grinevetsky, S. R., Zonn, I. S., Zhiltsov, S. S., Kosarev, A. N., & Kostianoy, A. G. (2015). The Black Sea encyclopedia. Springer, Berlin, 889 pages. https://doi.org/10.1007/978-3-642-55227-4

  • Groisillier, A., Labourel, A., Michel, G., & Tonon, T. (2015). The mannitol utilization system of the marine bacterium Zobellia galactanivorans. Applied and Environmental Microbiology, 81, 1799–1812. https://doi.org/10.1128/AEM.02808-14.

    Article  CAS  Google Scholar 

  • Gronewold, A. D., Borsuk, M. E., Wolpert, R. L., & Reckhow, K. H. (2008). An assessment of fecal indicator bacteria-based water quality standards. Environmental Science & Technology, 42, 4676–4682. https://doi.org/10.1021/es703144k.

    Article  CAS  Google Scholar 

  • Gunsalus, I. C., Horecker, B. L., & Wood, W. A. (1955). Pathways of carbohydrate metabolism in microorganisms. Bacteriological Reviews, 19, 79–128.

    Article  CAS  Google Scholar 

  • Hamidi, M., Kozani, P. S., Kozani, P. S., Pierre, G., Michaud, P., & Delattre, C. (2020). Marine bacteria versus microalgae: who is the best for biotechnological production of bioactive compounds with antioxidant properties and other biological applications? Marine Drugs, 18(1), 28. https://doi.org/10.3390/md18010028.

    Article  Google Scholar 

  • Hehemann, J. H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M., & Michel, G. (2010). Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 464, 908–912. https://doi.org/10.1038/nature08937.

    Article  CAS  Google Scholar 

  • Hobbie, J. E., Daley, R. J., & Jasper, S. (1977). Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 33, 1225–1228.

    Article  CAS  Google Scholar 

  • Hoppe, H. G., Arnosti, C., & Herndl, G. F. (2002). Ecological significance of bacterial enzymes in the marine environment. In R. G. Burns & R. P. Dick (Eds.), Enzymes in the environment (pp. 73–107). Basel: Marcel Dekker.

    Google Scholar 

  • Ishikawa, K., Kataoka, M., Yanamoto, T., Nakabayashi, M., Watanabe, M., Ishihara, S., & Yamaguchi, S. (2015). Crystal structure of β-galactosidase from Bacillus circulans ATCC 31382 (BgaD) and the construction of the thermophilic mutants. FEBS Journal, 282(13), 2540–2552. https://doi.org/10.1111/febs.13298.

    Article  CAS  Google Scholar 

  • Jadeau, F., Grangeasse, C., Shi, L., Mijakovic, I., Deleage, G., & Combet, C. (2011). BYKdb: the bacterial protein tYrosine kinase database. Nucleic Acids Research, 40, D321–D324. https://doi.org/10.1093/nar/gkr915.

    Article  CAS  Google Scholar 

  • Joint, I., Mühling, M., & Querellou, J. (2010). Culturing marine bacteria-an essential prerequisite for biodiscovery. Microbial Biotechnology, 3, 564–575. https://doi.org/10.1111/j.1751-7915.2010.00188.x.

    Article  CAS  Google Scholar 

  • Karl, D. M. (2007). Microbial oceanography: paradigms, processes and promise. Nature Reviews Microbiology, 5, 759–769. https://doi.org/10.1038/nrmicro1749.

    Article  CAS  Google Scholar 

  • Khaitovich, A. B., & Ved’mina, E. A. (1987). Vibrio and aeromonad sensitivity to the vibriostatic O 129. Antibiotics and Medical Biotechnology, 32, 446–449.

    CAS  Google Scholar 

  • Klippel, B., Sahm, K., Basner, A., Wiebusch, S., John, P., Lorenz, U., Peters, A., Abe, F., Takahashi, K., Kaiser, O., Goesmann, A., Jaenicke, S., Grote, R., Horikoshi, K., & Antranikian, G. (2014). Carbohydrate-active enzymes identified by metagenomic analysis of deep-sea sediment bacteria. Extremophiles, 18(5), 853–863. https://doi.org/10.1007/s00792-014-0676-3.

    Article  CAS  Google Scholar 

  • Kohl, D. H., Schubert, K. R., Carter, M. B., Hagedorn, C. H., & Shearer, G. (1988). Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis. Proceedings of the National Academy of Sciences, USA, 85, 2036–2040. https://doi.org/10.1073/pnas.85.7.2036.

    Article  CAS  Google Scholar 

  • Kopuz, U., Feyzioglu, A. M., & Agirbas, E. (2012). Picoplankton dynamics during late spring 2010 in the South-Eastern Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 12, 397–405. https://doi.org/10.4194/1303-2712-v12_2_28.

    Article  Google Scholar 

  • Lancelot, C., Martin, J. M., Panin, N., & Zaitsev, Y. (2002). The north-western Black Sea: a pilot site to understand the complex interaction between human activities and the coastal environment. Estuarine, Coastal and Shelf Science, 54, 279–283. https://doi.org/10.1006/ecss.2000.0647.

    Article  CAS  Google Scholar 

  • Leight, A. K., Crump, B. C., & Hood, R. R. (2018). Assessment of fecal indicator bacteria and potential pathogen co-occurrence at a shellfish growing area. Frontiers in Microbiology, 9, 384. https://doi.org/10.3389/fmicb.2018.00384.

    Article  Google Scholar 

  • Levit, M. (1981). Effect of proline residues on protein folding. Journal of Molecular Biology, 145, 251–263. https://doi.org/10.1016/0022-2836(81)90342-9.

    Article  Google Scholar 

  • Luesink, E. J., Kuipers, O. P., & de Vos, W. M. (1998). Regulation of the carbohydrate metabolism in Lactococcus lactis and other lactic acid bacteria. Lait, 78(1), 69–76. https://doi.org/10.1051/lait:199819.

    Article  CAS  Google Scholar 

  • Macek, B., Gnad, F., Soufi, B., Kumar, C., Olsen, J. V., Mijakovic, I., & Mann, M. (2008). Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Molecular & Cellular Proteomics, 7, 299–307. https://doi.org/10.1074/mcp.M700311-MCP200.

    Article  CAS  Google Scholar 

  • Maher, M. J., Herath, A. S., Udagedara, S. R., Dougan, D. A., & Truscott, K. N. (2018). Crystal structure of bacterial succinate: quinone oxidoreductase flavoprotein SdhA in complex with its assembly factor SdhE. Proceedings of the National Academy of Sciences, 115, 2982–2987. https://doi.org/10.1073/pnas.1800195115.

    Article  CAS  Google Scholar 

  • Mara, D. D. (1974). Bacteriology for sanitary engineers. Longman and London: Churchill Livingstone 209 page. ISBN: 978-0443009808.

    Google Scholar 

  • Mateo-Sagasta, J., Zadeh, S. M., & Turral, H. (2017). Water pollution from agriculture: a global review-executive summary. FAO (UN) and International Water Management: Institute.

    Google Scholar 

  • Mopper, K., Dawson, R., Liebezeit, G., & Ittekkot, V. (1980). The monosaccharide spectra of natural waters. Marine Chemistry, 10, 55–66. https://doi.org/10.1016/0304-4203(80)90058-4.

    Article  CAS  Google Scholar 

  • Nagata, K., Nagata, Y., Sato, T., Fujino, M. A., Nakajima, K., & Tamura, T. (2003). L-serine, D- and L-proline and alanine as respiratory substrates of Helicobacter pylori: correlation between in vitro and in vivo amino acid levels. Microbiology, 149, 2023–2030. https://doi.org/10.1099/mic.0.26203-0.

    Article  CAS  Google Scholar 

  • Nellemann, C., Corcoran, E., Duarte, C. M., Valdes, L., DeYoung, C., Fonseca, L., & Grimsditch, G. (2009). Blue carbon. The role of healthy oceans in binding carbon. A rapid response assessment. Arendal, Norway: United Nations Environment Programme, GRID-Arendal.

    Google Scholar 

  • Nixon, S. W. (1995). Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41, 199–219. https://doi.org/10.1080/00785236.1995.10422044.

    Article  Google Scholar 

  • Noble, R. T., & Fuhrman, J. A. (2001). Enteroviruses detected by reverse transcriptase polymerase chain reaction from the coastal waters of Santa Monica Bay, California: low correlation to bacterial indicator levels. Hydrobiologia, 460, 175–184. https://doi.org/10.1023/A:1013121416891.

    Article  CAS  Google Scholar 

  • Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. P. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4, 51. https://doi.org/10.1186/s13568-014-0051-x.

    Article  Google Scholar 

  • Patterson, E. K., Hsiao, S. H., & Keppel, A. (1963). Studies on dipeptidases and aminopeptidases I. Distinction between leucine aminopeptidase and enzymes that hydrolyze L-leucyl-,B-naphthylamide. Journal of Biological Chemistry, 283, 3611–3620.

    Google Scholar 

  • Pincus, D. H. (2006). Microbial identification using the bioMerieux VITEK® 2 system.  In: Encyclopedia of Rapid Microbiological Methods. Miller MJ (Ed.). Parenteral Drug Association, USA. https://store.pda.org/tableofcontents/ermm_v2_ch01.pdf. Accessed 10 Feb 2020.

  • Polikarpov, G. G., Zaitsev, Y. P., Zats, V. I., & Rachenko, L. A. (1991). Pollution of the Black Sea (levels and sources).  In: Proceedings of the Black Sea Symposium, 16-18 Sept. 1991, Turkey, Istanbul (ed. K.C.Güven) The Black Sea Foundation for Education, Istanbul: Culture and Protection of Nature.

  • Pomeroy, L. R., Hanson, R. B., McGillivary, P. A., Sherr, B. F., Kirchman, D., & Deibel, D. (1984). Microbiology and chemistry of fecal products of pelagic tunicates: rates and fates. Bulletin of Marine Science, 35(3), 426–439.

  • Pomeroy, L. R., & Wiebe, W. J. (2001). Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology, 23(ss), 187–204. https://doi.org/10.3354/ame023187.

    Article  Google Scholar 

  • Pomeroy, L. R., Williams, P. J., Azam, F., & Hobbie, E. A. (2007). The microbial loop. Oceanography, 20, 28–33. https://doi.org/10.5670/oceanog.2007.45.

    Article  Google Scholar 

  • Quinn, G., & Keough, M. (2002). Experimental design and data analysis for biologists. Cambridge University Press. https://doi.org/10.1017/CBO9780511806384

  • Rather, I. A., Galope, R., Bajpai, V. K., Lim, J., Paek, W. K., & Park, Y. (2017). Diversity of marine bacteria and their bacteriocins: applications in aquaculture. Reviews in Fisheries Science & Aquaculture, 25, 257–269. https://doi.org/10.1080/23308249.2017.1282417.

    Article  Google Scholar 

  • Ravichandran, A., Sugiyama, N., Tomita, M., Swarup, S., & Ishihama, Y. (2009). Ser/Thr/Tyr phosphoproteome analysis of pathogenic and nonpathogenic Pseudomonas species. Proteomics, 9, 2764–2775. https://doi.org/10.1002/pmic.200800655.

    Article  CAS  Google Scholar 

  • Rich, J. H., Ducklow, H. W., & Kirchman, D. L. (1996). Concentrations and uptake of neutral monosaccharides along 140°W in the equatorial Pacific: contribution of glucose to heterotrophic bacterial activity and the DOM flux. Limnology and Oceanography, 41, 595–604.

    Article  CAS  Google Scholar 

  • Richardson, K., & Jorgensen, B. B. (1996). Eutrophication: definition, history and effects. In:Jørgensen BB, Richardson K (eds) Eutrophication in coastal marine ecosystems. Coastal and Estuarine studies, American Geophysical Union, 52, 1–19, Washington, DC. https://doi.org/10.1029/CE052p0001

  • Rosenfeld, Y., & Shai, Y. (2006). Lipopolysaccharide (endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(9), 1513–1522. https://doi.org/10.1016/j.bbamem.2006.05.017.

    Article  CAS  Google Scholar 

  • Ruhal, R., Kataria, R., & Choudhury, B. (2013). Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microbial Biotechnology, 6, 493–502. https://doi.org/10.1111/1751-7915.12029.

    Article  CAS  Google Scholar 

  • Ruiz-Ponte, C., Cilia, V., Lambert, C., & Nicolas, J. L. (1998). Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. International Journal of Systematic and Evolutionary Microbiology, 48, 537–542. https://doi.org/10.1099/00207713-45-2-406.

    Article  CAS  Google Scholar 

  • Santoro, A. E., & Boehm, A. B. (2007). Frequent occurrence of the human-specific Bacteroides fecal marker at an open coast marine beach: relationship to waves, tides and traditional indicators. Environmental Microbiology, 9, 2038–2049. https://doi.org/10.1111/j.1462-2920.2007.01319.x.

    Article  CAS  Google Scholar 

  • Schoen, M. E., & Ashbolt, N. J. (2010). Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environmental Science and Technology, 44(7), 2286–2291. https://doi.org/10.1021/es903523q.

    Article  CAS  Google Scholar 

  • Sevim, A., (2005). Investigation of fecal coliform pollution of rivers in Trabzon and antibiotic resistance profiles of coliform bacteria, M.Sc. thesis, Karadeniz Technical University, Institute of Graduate Studies in Science and Engineering, 170942.

  • Shi, L., Ji, B. Y., Kolar-Znika, L., Boskovic, A., Jadeau, F., Combet, C., Grangeasse, C., Franjevic, D., Talla, E., & Mijakovic, I. (2014). Evolution of bacterial protein-tyrosine kinases and their relaxed specificity toward substrates. Genome Biology and Evolution, 6(4), 800–817. https://doi.org/10.1093/gbe/evu056.

    Article  CAS  Google Scholar 

  • Shibasaki, T., Mori, H., Chiba, S., & Ozaki, A. (1999). Microbial proline 4-hy-droxylase screening and gene cloning. Applied and Environmental Microbiology, 65, 4028–4031.

    Article  CAS  Google Scholar 

  • Shuval, H. (2003). Estimating the global burden of thalassogenic diseases: human infectious diseases caused by wastewater pollution of the marine environment. Journal of Water and Health, 1(2), 53–64.

    Article  Google Scholar 

  • Sivri, N., (1993). Importance of nitrification bacteria in determining seawater quality, M.Sc. thesis, Karadeniz Technical University, Institute of Graduate Studies in Science and Engineering, 28650.

  • Sivri, N., Karaçam, H., & Feyzioğlu, M. (1998). Nitrifying bacterial activity in south eastern black sea (Coast of Sürmene). Turkish Journal of Biology, 22(3), 299–306.

  • Tabak, F., (2002). Dimensions of fecal contamination in Rize coasts, M.Sc. thesis, Karadeniz Technical University, Institute of Graduate Studies in Science and Engineering, 127467.

  • Takasu, H., & Nagata, T. (2015). High proline content of bacteriasized particles in the western North Pacific and its potential as a new biogeochemical indicator of organic matter diagenesis. Frontiers in Marine Science, 2, 110. https://doi.org/10.3389/fmars.2015.00110.

    Article  Google Scholar 

  • Taşpınar, B., (2016). Investigion og bacteriologial and detergant pollution due to domestic waste in the rivers of Salarha basin, M.Sc. thesis, Recep Tayyip Erdogan University, Institute of Graduate Studies in Science and Engineering, 418542.

  • Taşpınar, B., Verep, B., Terzi, E., & Çetindemir, D. (2015). Rize ili kıyı şeridinde bakteriyolojik kirliliğin araştırılması. Yunus Araştırma Bülteni, 15(2), 17–27. https://doi.org/10.17693/yunusae.vi.235762.

    Article  Google Scholar 

  • Terzi, E. (2018). Antimicrobial resistance profiles and tetracycline resistance genes of Escherichia coli in Mediterranean mussel and sea snails collected from Black Sea, Turkey. Alınteri Zirai Bilimler Dergisi, 33(1), 43–49. https://doi.org/10.28955/alinterizbd.355019.

    Article  Google Scholar 

  • Terzi, E., & Çapkın, E. (2017). Doğu Karadeniz Bölgesindeki Bazı Alabalık İşletmelerinin Sucul Ortamlarında Toplam ve Fekal Koliform Bakteri Seviyeleri. Anadolu Çevre ve Hayvancılık Bilimleri Dergisi, 2(2), 34–37.

    Google Scholar 

  • Terzi, Y., & Seyhan, K. (2017). Seasonal and spatial variations of marine litter on the south-eastern Black Sea coast. Marine Pollution Bulletin, 120(1–2), 154–158. https://doi.org/10.1016/j.marpolbul.2017.04.041.

    Article  CAS  Google Scholar 

  • Topping, G., Mee, L. D., & Sarıkaya, H. (1999). Land-based sources of contaminants to the Black Sea, Black Sea pollution assesment. In L. D. Mee & G. Topping (Eds.), Black Sea environmental series. New York: UN Publications ISBN: 978-3-540-74292-0.

    Google Scholar 

  • Unanue, M., Ayo, B., Agis, M., Slezak, D., Herndl, G. J., & Iriberri, J. (1999). Ectoenzymatic activity and uptake of monomers in marine bacterioplankton described by a biphasic kinetic model. Microbial Ecology, 37, 36–48. https://doi.org/10.1007/s002489900128.

    Article  CAS  Google Scholar 

  • Uzun, E., & Ögüt, H. (2015). The isolation frequency of bacterial pathogens from seabass (Dicentrarchus labrax) in the Southeastern Black Sea. Aquaculture, 437, 30–37. https://doi.org/10.1016/j.aquaculture.2014.11.017.

    Article  Google Scholar 

  • Valiela, I., Alber, M., & LaMontagne, M. (1991). Fecal coliform loadings and stocks in Buttermilk Bay, Massachusetts, U.S.A., and management implications. Environmental Management, 15, 659–674. https://doi.org/10.1007/BF02589625.

    Article  Google Scholar 

  • Viau, E. J., Goodwin, K. D., Yamahara, K. M., Layton, B. A., Sassoubre, L. M., Burns, S. L., Tong, H. I., Wong, S. H., Lu, Y., & Boehm, A. B. (2011). Bacterial pathogens in Hawaiian coastal streams-associations with fecal indicators, land cover, and water quality. Water Researh., 45(11), 3279–3290. https://doi.org/10.1016/j.watres.2011.03.033.

  • Wade, T. J., Pai, N., Eisenberg, J. N., & Colford Jr., J. M. (2003). Do U.S. Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environmental Health Perspectives, 111, 1102–1109. https://doi.org/10.1289/ehp.6241.

    Article  Google Scholar 

  • Wang, X., & Quinn, P. J. (2010). Endotoxins: lipopolysaccharides of gram-negative bacteria. Subcellular Biochemistry, 53, 3–25. https://doi.org/10.1007/978-90-481-9078-2_1.

    Article  CAS  Google Scholar 

  • Westley, J. W., Anderson, P. J., Close, V. A., Hapern, B., & Lederberg, E. M. (1967). Aminopeptidase profiles of various bacteria. Journal of Applied Microbiology, 15, 822–825.

    Article  CAS  Google Scholar 

  • Whitmore, S. E., & Lamont, R. J. (2012). Tyrosine phosphorylation and bacterial virulence. International Journal of Oral Science, 4, 1–6. https://doi.org/10.1038/ijos.2012.6.

    Article  CAS  Google Scholar 

  • WHO, (1998). Guidelines for safe recreational water environments: coastal and fresh waters draft for consultation ref. EOS/Draft/98.14, Geneva, October 1998, 207.

  • WHO, (2003). Looking back : looking ahead : five decades of challenges and achievements in environmental sanitation and health. World Health Organization, 20 pages. https://apps.who.int/iris/handle/10665/42752. Accessed 31 Jan 2020.

  • WHO, (2018). Waterborne disease related to unsafe water and sanitation. WHO Housing and health guidelines, 172 pages. ISBN 978-92-4-155037-6http://www.who.int/sustainable-development/housing/health-risks/waterborne-disease/en/ Accessed 21 January 2020.

  • Wu, J., Yunus, M., Islam, M.S., Emch, M., (2016). Influence of climate extremes and landuse on fecal contamination of shallow tubewells in Bangladesh. Environmental Science & Technology, 50, 2669–2676 10.1021/acs.est.5b05193.

  • Yılmaz, A.A, (2008). Characterization of antibiotic resistance in enteric bacteria which are isolated from seawater in Rize city coasts, M.Sc. thesis, Karadeniz Technical University, Institute of Graduate Studies in Science and Engineering, 212028.

  • Zhang, X. H., & Chiang, V. L. (1997). Molecular cloning of 4-coumarate: coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood. Plant Physiology, 113, 65–74. https://doi.org/10.1104/pp.113.1.65.

    Article  CAS  Google Scholar 

  • Zhang, L., Alfano, J. R., & Becker, D. F. (2015). Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli. Journal of Bacteriology, 197, 431–440. https://doi.org/10.1128/JB.02282-14.

    Article  CAS  Google Scholar 

Download references

Funding

The authors wish to Istanbul University Scientific Research Projects Unit (Project number: 27137) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samet Kalkan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalkan, S., Altuğ, G. The composition of cultivable bacteria, bacterial pollution, and environmental variables of the coastal areas: an example from the Southeastern Black Sea, Turkey. Environ Monit Assess 192, 356 (2020). https://doi.org/10.1007/s10661-020-08310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08310-5

Keywords

Navigation