Abstract
Bacterial cellulose (BC) is a polymer with interesting conformation and properties. BC can be obtained in different shapes and is easily modified by chemical and physical means, so its applications in the production of new materials and nanocomposites for different purposes have been in the focus of many research projects. However, one of the major challenges to address in bacterium-derived polymer technology is to find suitable carbon sources as substrates that are cheap and do not compete with food production for achieving large scale industrial applications. Agricultural wastes are defined as the residues from the growing and processing of raw agricultural products such as crops, fruits, vegetables and dairy products. Their composition can vary depending on the type of agricultural activity and harvesting conditions, but these residues are suitable for the production of BC. The aim of this review is to give insight into the production of BC using agro-wastes and an overview of the most interesting and novel applications of this biopolymer in different areas i.e. environmental applications, optoelectronic and conductive devices, food ingredients and packaging, biomedicine, and 3D printing technology.
Graphic abstract





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdelraof M, Hasanin MS, El-Saied H (2019) Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydr Polym 211:75–83. https://doi.org/10.1016/J.CARBPOL.2019.01.095
Akoğlu A, Cakir I, Karahan AG, Cakmakci ML (2018) Effects of bacterial cellulose as a fat replacer on some properties of fat-reduced mayonnaise. Rom Biotechnol Lett 23:13674–13680
Aleshin AN, Shcherbakov IP, Khripunov AK et al (2017) Light-emitting flexible transparent paper based on bacterial cellulose modified with semiconducting polymer MEH:PPV. Flex Print Electron. https://doi.org/10.1088/2058-8585/aa7661
Algar I, Fernandes SCM, Mondragon G et al (2014) Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. J Appl Polym Sci 132:1–8. https://doi.org/10.1002/app.41237
Azly K, Maisarah N, Mustapha M et al (2020) Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material. Mater Today Proc 31:83–88. https://doi.org/10.1016/j.matpr.2020.01.201
Beekmann U, Schmölz L, Lorkowski S et al (2020) Process control and scale-up of modified bacterial cellulose production for tailor-made anti-inflammatory drug delivery systems. Carbohydr Polym 236:116062. https://doi.org/10.1016/j.carbpol.2020.116062
Belaustegui Y, Pantò F, Urbina L et al (2020) Bacterial-cellulose-derived carbonaceous electrode materials for water desalination via capacitive method: the crucial role of defect sites. Desalination. https://doi.org/10.1016/j.desal.2020.114596
Belgacem MN, Gandini A (2008) Monomers, polymers and composites. Elsevier Science
Campano C, Merayo N, Negro C, Blanco Á (2018) Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. Int J Biol Macromol 114:1077–1083. https://doi.org/10.1016/j.ijbiomac.2018.03.170
Caponetto R, Di Pasquale G, Graziani S et al (2019) Realization of green fractional order devices by using bacterial cellulose. AEU - Int J Electron Commun 112:152927. https://doi.org/10.1016/J.AEUE.2019.152927
Castro C, Zuluaga R, Putaux J-L et al (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102. https://doi.org/10.1016/J.CARBPOL.2010.10.072
Castro C, Zuluaga R, Álvarez C et al (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037. https://doi.org/10.1016/J.CARBPOL.2012.03.045
Cerrutti P, Roldán P, García RM et al (2016) Production of bacterial nanocellulose from wine industry residues: Importance of fermentation time on pellicle characteristics. J Appl Polym Sci 133:1–9. https://doi.org/10.1002/app.43109
Chand N, Fahim M (2008) Natural fibers and their composites. Tribol Nat Fiber Polym Compos. https://doi.org/10.1533/9781845695057.1
Chantereau G, Brown N, Dourges M-A et al (2019) Silylation of bacterial cellulose to design membranes with intrinsic anti-bacterial properties. Carbohydr Polym 220:71–78. https://doi.org/10.1016/J.CARBPOL.2019.05.009
Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124
Chen L, Hong F, Yang X, Han S (2013) Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour Technol 135:464–468. https://doi.org/10.1016/J.BIORTECH.2012.10.029
Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:1–10. https://doi.org/10.1186/1754-1611-3-12
Cheng Z, Yang R, Liu X et al (2017) Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source. Bioresour Technol 234:8–14. https://doi.org/10.1016/j.biortech.2017.02.131
Cheng R, Kang M, Zhuang S et al (2019) Adsorption of Sr(II) from water by mercerized bacterial cellulose membrane modified with EDTA. J Hazard Mater 364:645–653. https://doi.org/10.1016/J.JHAZMAT.2018.10.083
Cichosz S, Masek A (2019) Cellulose fibers hydrophobization via a hybrid chemical modification. Polymers (basel). https://doi.org/10.3390/polym11071174
de Lima FMT, Pinto FCM, da SilveiraAndrade-da BL et al (2017) Biocompatible bacterial cellulose membrane in dural defect repair of rat. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-016-5828-9
Dhar P, Pratto B, Jose A et al (2019) Valorization of sugarcane straw to produce highly conductive bacterial cellulose/graphene nanocomposite films through in situ fermentation: kinetic analysis and property evaluation. J Clean Prod 238:117859. https://doi.org/10.1016/j.jclepro.2019.117859
Dórame-Miranda RF, Gámez-Meza N, Medina-Juárez LÁ et al (2019) Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohydr Polym 207:91–99. https://doi.org/10.1016/J.CARBPOL.2018.11.067
Dourado F, Gama M, Rodrigues AC (2017) A Review on the toxicology and dietetic role of bacterial cellulose. Toxicol Reports 4:543–553. https://doi.org/10.1016/J.TOXREP.2017.09.005
Eslahi N, Mahmoodi A, Mahmoudi N et al (2020) Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications. Polym Rev 60:144–170. https://doi.org/10.1080/15583724.2019.1663210
Esra Erbas Kiziltas E, Kiziltas A, Gardner DJ (2015) Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr Polym 124:131–138. https://doi.org/10.1016/j.carbpol.2015.01.036
Ezejiofor T (2014) Waste to wealth-value recovery from agro-food processing wastes using biotechnology: a review. Br Biotechnol J 4:418–481. https://doi.org/10.9734/bbj/2014/7017
Faisul Aris FA, Mohd Fauzi FNA, Tong WY, Syed Abdullah SS (2019) Interaction of silver sulfadiazine wıth bacterial cellulose via ex-situ modification method as an alternative diabetic wound healing. Biocatal Agric Biotechnol 21:101332. https://doi.org/10.1016/j.bcab.2019.101332
Fan X, Gao Y, He W et al (2016) Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr Polym 151:1068–1072. https://doi.org/10.1016/J.CARBPOL.2016.06.062
Fink H, Gustafsson L, Bodin A, Ba H (2007) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434. https://doi.org/10.1002/bit
Fortunato E, Gaspar D, Duarte P et al (2016) Optoelectronic devices from bacterial nanocellulose. Elsevier B.V.
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4
Galdino CJS, Maia AD, Meira HM et al (2020) Use of a bacterial cellulose filter for the removal of oil from wastewater. Process Biochem 91:288–296. https://doi.org/10.1016/J.PROCBIO.2019.12.020
Goelzer FDE, Faria-Tischer PCS, Vitorino JC et al (2009) Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater Sci Eng C 29:546–551. https://doi.org/10.1016/J.MSEC.2008.10.013
Gromovykh TI, Pigaleva MA, Gallyamov MO et al (2020) Structural organization of bacterial cellulose: the origin of anisotropy and layered structures. Carbohydr Polym 237:116140. https://doi.org/10.1016/j.carbpol.2020.116140
Guan F, Chen S, Sheng N et al (2019) Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor. Chem Eng J 360:829–837. https://doi.org/10.1016/J.CEJ.2018.11.202
Guo Y, Zhang X, Hao W et al (2018) Nano-bacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model. Carbohydr Polym 198:620–630. https://doi.org/10.1016/J.CARBPOL.2018.06.078
Güzel M, Akp Ö (2020) Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. Int J Biol Macromol 162:1597–1604. https://doi.org/10.1016/j.ijbiomac.2020.08.049
Halib N, Ahmad I, Grassi M, Grassi G (2019) The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. Int J Pharm 566:631–640. https://doi.org/10.1016/j.ijpharm.2019.06.017
Hassan A, Sorour NM, El-Baz A, Shetaia Y (2019) Simple synthesis of bacterial cellulose/magnetite nanoparticles composite for the removal of antimony from aqueous solution. Int J Environ Sci Technol 16:1433–1448. https://doi.org/10.1007/s13762-018-1737-4
He J, Zhao H, Li X et al (2018) Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J Hazard Mater 346:199–207. https://doi.org/10.1016/J.JHAZMAT.2017.12.045
Hernández-Arriaga AM, del Cerro C, Urbina L et al (2019) Genome sequence and characterization of the bcs clusters for the production of nanocellulose from the low pH resistant strain Komagataeibacter medellinensis ID13488. Microb Biotechnol 12:620–632. https://doi.org/10.1111/1751-7915.13376
Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352. https://doi.org/10.1042/bj0580345
Hong F, Guo X, Zhang S et al (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol 104:503–508. https://doi.org/10.1016/J.BIORTECH.2011.11.028
Hoshi T, Yamazaki K, Sato Y et al (2018) Production of hollow-type spherical bacterial cellulose as a controlled release device by newly designed floating cultivation. Heliyon 4:e00873. https://doi.org/10.1016/J.HELIYON.2018.E00873
Hosseini H, Teymouri M, Saboor S et al (2019) Challenge between sequence presences of conductive additives on flexibility, dielectric and supercapacitance behaviors of nanofibrillated template of bacterial cellulose aerogels. Eur Polym J 115:335–345. https://doi.org/10.1016/J.EURPOLYMJ.2019.03.033
Hou Y, Duan C, Zhu G et al (2019) Functional bacterial cellulose membranes with 3D porous architectures: conventional drying, tunable wettability and water/oil separation. J Memb Sci 591:117312. https://doi.org/10.1016/J.MEMSCI.2019.117312
Hsu TC, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913. https://doi.org/10.1016/j.biortech.2009.10.009
Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26:2895–2911. https://doi.org/10.1007/s10570-019-02307-1
Ibrahim I, Athanasekou C, Manolis G et al (2019) Photocatalysis as an advanced reduction process (ARP): the reduction of 4-nitrophenol using titania nanotubes-ferrite nanocomposites. J Hazard Mater 372:37–44. https://doi.org/10.1016/J.JHAZMAT.2018.12.090
Inoue BS, Streit S, dos Santos Schneider AL, Meier MM (2020) Bioactive bacterial cellulose membrane with prolonged release of chlorhexidine for dental medical application. Int J Biol Macromol 148:1098–1108. https://doi.org/10.1016/j.ijbiomac.2020.01.036
Jawaid M, Boufi S, HPS AK (2017) Cellulose-reinforced nanofibre camposites: production, properties and applications, 1st edn. Woodhead Publishing
Jayasekara S, Ratnayake R (2019) Microbial cellulases: an overview and applications. Cellulose. https://doi.org/10.5772/intechopen.84531
Jozala AF, Pértile RAN, dos Santos CA et al (2015) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 99:1181–1190. https://doi.org/10.1007/s00253-014-6232-3
Ju S, Zhang F, Duan J, Jiang J (2020) Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: a comparative study. Carbohydr Polym 237:116167. https://doi.org/10.1016/J.CARBPOL.2020.116167
Kamarudin N, Rahman NA, Kalil SM, Kamarudin SK (2018) Comparative study of bio-cellulose from Acetobacter Xylinum 0416 and commercial hard gelatine capsule. Int J Appl Eng Res 13:743–748
Keskin Z, Sendemir Urkmez A, Hames EE (2017) Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Mater Sci Eng C 75:1144–1153. https://doi.org/10.1016/j.msec.2017.03.035
Khandelwal M, Windle AH, Hessler N (2016) In situ tunability of bacteria produced cellulose by additives in the culture media. J Mater Sci 51:4839–4844. https://doi.org/10.1007/s10853-016-9783-0
Kosseva MR, Zhong S, Li M et al (2020) Biopolymers produced from food wastes: a case study on biosynthesis of bacterial cellulose from fruit juices. Food Ind Wastes. https://doi.org/10.1016/b978-0-12-817121-9.00011-5
Kumbhar JV, Rajwade JM, Paknikar KM (2015) Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol 99:6677–6691. https://doi.org/10.1007/s00253-015-6644-8
Kumbhar JV, Jadhav SH, Bodas DS et al (2017) In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects. Int J Nanomedicine 12:6437–6459. https://doi.org/10.2147/IJN.S137361
Kuo CH, Huang CY, Shieh CJ et al (2019) Hydrolysis of orange peel with cellulase and pectinase to produce bacterial cellulose using Gluconacetobacter xylinus. Waste and Biomass Valorization 10:85–93. https://doi.org/10.1007/s12649-017-0034-7
Lavasani PS, Motevaseli E, Shirzad M, Modarressi MH (2017) Isolation and identification of komagataeibacter xylinus from Iranian traditional vinegars and molecular analyses. Iran J Microbiol 9:338–347
Lee SE, Park YS (2017) The role of bacterial cellulose in artificial blood vessels. Mol Cell Toxicol 13:257–261. https://doi.org/10.1007/s13273-017-0028-3
Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32. https://doi.org/10.1002/mabi.201300298
Legnani C, Barud HS, Caiut JMA et al (2019) Transparent bacterial cellulose nanocomposites used as substrate for organic light-emitting diodes. J Mater Sci Mater Electron 30:16718–16723. https://doi.org/10.1007/s10854-019-00979-w
Lestari P, Elfrida N, Suryani A, Suryadi Y (2014) Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan J Biol Sci 7:75–80. https://doi.org/10.12816/0008218
Li Z, Wang L, Hua J et al (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119. https://doi.org/10.1016/j.carbpol.2014.11.061
Li Z, Lv X, Chen S et al (2016) Improved cell infiltration and vascularization of three-dimensional bacterial cellulose nanofibrous scaffolds by template biosynthesis. RSC Adv 6:42229–42239. https://doi.org/10.1039/c6ra07685h
Lin WC, Lien CC, Yeh HJ et al (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611. https://doi.org/10.1016/j.carbpol.2013.01.076
Lin SP, Hsieh SC, Chen KI et al (2014) Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose 21:835–844. https://doi.org/10.1007/s10570-013-0136-8
Lotfiman S, Awang Biak DR, Ti TB et al (2018) Influence of date syrup as a carbon source on bacterial cellulose production by Acetobacter xylinum 0416. Adv Polym Technol 37:1085–1091. https://doi.org/10.1002/adv.21759
Luz EPCG, Borges MF, Andrade FK et al (2018) Strontium delivery systems based on bacterial cellulose and hydroxyapatite for guided bone regeneration. Cellulose 25:6661–6679. https://doi.org/10.1007/s10570-018-2008-8
Machado RTA, Meneguin AB, Sábio RM et al (2018) Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Ind Crops Prod 122:637–646. https://doi.org/10.1016/J.INDCROP.2018.06.048
Martins D, Estevinho B, Rocha F et al (2020) A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions. Carbohydr Polym 230:115657. https://doi.org/10.1016/J.CARBPOL.2019.115657
Meng C, Zhong N, Hu J et al (2019) The effects of metal elements on ramie fiber oxidation degumming and the potential of using spherical bacterial cellulose for metal removal. J Clean Prod 206:498–507. https://doi.org/10.1016/J.JCLEPRO.2018.09.072
Mensah A, Lv P, Narh C et al (2019) Sequestration of Pb(II) ions from aqueous systems with novel green bacterial cellulose graphene oxide composite. Materials (basel). https://doi.org/10.3390/ma12020218
Menzel C, González-martínez C, Chiralt A, Vilaplana F (2019) Antioxidant starch films containing sunflower hull extracts. Carbohydr Polym 214:142–151. https://doi.org/10.1016/j.carbpol.2019.03.022
Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583. https://doi.org/10.1111/j.1365-2672.2009.04226.x
Mocanu A, Isopencu G, Busuioc C et al (2019) Bacterial cellulose films with ZnO nanoparticles and propolis extracts: Synergistic antimicrobial effect. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-54118-w
Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523. https://doi.org/10.1016/J.CARBPOL.2014.10.008
Molina-Ramírez C, Castro C, Zuluaga R, Gañán P (2018) Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by-products as alternative low-cost feedstocks. J Polym Environ 26:830–837. https://doi.org/10.1007/s10924-017-0993-6
Nimeskern L, Martínez Ávila H, Sundberg J et al (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21. https://doi.org/10.1016/j.jmbbm.2013.03.005
Okiyama A, Motoki M, Yamanaka S (1992) Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocoll 6:479–487. https://doi.org/10.1016/S0268-005X(09)80033-7
Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. https://doi.org/10.1080/02773818608085213
Paximada P, Koutinas AA, Scholten E, Mandala IG (2016a) Effect of bacterial cellulose addition on physical properties of WPI emulsions. Comparison with common thickeners. Food Hydrocoll 54:245–254. https://doi.org/10.1016/J.FOODHYD.2015.10.014
Paximada P, Tsouko E, Kopsahelis N et al (2016b) Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocoll 53:225–232. https://doi.org/10.1016/J.FOODHYD.2014.12.003
Pourali P, Razavianzadeh N, Khojasteh L, Yahyaei B (2018) Assessment of the cutaneous wound healing efficiency of acidic, neutral and alkaline bacterial cellulose membrane in rat. J Mater Sci Mater Med 29:90. https://doi.org/10.1007/s10856-018-6099-4
Putra A, Kakugo A, Furukawa H et al (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer (guildf) 49:1885–1891. https://doi.org/10.1016/j.polymer.2008.02.022
Qi GX, Luo MT, Huang C et al (2017) Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse acid and enzymatic hydrolysates. J Appl Polym Sci 134:1–7. https://doi.org/10.1002/app.45066
Qiao N, Fan X, Zhang X et al (2019) Soybean oil refinery effluent treatment and its utilization for bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll 97:105185. https://doi.org/10.1016/j.foodhyd.2019.105185
Rani MU, Appaiah KAA (2013) Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J Food Sci Technol 50:755–762. https://doi.org/10.1007/s13197-011-0401-5
Retegi A, Gabilondo N, Peña C et al (2010) Bacterial cellulose films with controlled microstructure-mechanical property relationships. Cellulose 17:661–669. https://doi.org/10.1007/s10570-009-9389-7
Revin V, Liyaskina E, Nazarkina M et al (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 49:151–159. https://doi.org/10.1016/J.BJM.2017.12.012
Roman M, Haring AP, Bertucio TJ (2019) The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Curr Opin Chem Eng 24:98–106. https://doi.org/10.1016/j.coche.2019.03.006
Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1–15. https://doi.org/10.1186/s40643-017-0187-z
Sajjad W, Khan T, Ul-Islam M et al (2019) Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr Polym 206:548–556. https://doi.org/10.1016/j.carbpol.2018.11.023
Salari M, Sowti Khiabani M, Rezaei Mokarram R et al (2018) Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll 84:414–423. https://doi.org/10.1016/j.foodhyd.2018.05.037
Samyn P, Barhoum A, Öhlund T, Dufresne A (2018) Review: nanoparticles and nanostructured materials in papermaking. J Mater Sci 53:146–184. https://doi.org/10.1007/s10853-017-1525-4
Santos SM, Carbajo JM, Gómez N et al (2017) Paper reinforcing by in situ growth of bacterial cellulose. J Mater Sci 52:5882–5893. https://doi.org/10.1007/s10853-017-0824-0
Schaffner M, Rühs PA, Coulter F et al (2017) 3D printing of bacteria into functional complex materials. Sci Adv 3:eaao6804. https://doi.org/10.1126/sciadv.aao6804
Shafipour Yordshahi A, Moradi M, Tajik H, Molaei R (2020) Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria. Int J Food Microbiol 321:108561. https://doi.org/10.1016/j.ijfoodmicro.2020.108561
Shao Y, Feng C, Deng B et al (2019) Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy 62:620–627. https://doi.org/10.1016/J.NANOEN.2019.05.078
Sheng N, Chen S, Yao J et al (2019) Polypyrrole@TEMPO-oxidized bacterial cellulose/reduced graphene oxide macrofibers for flexible all-solid-state supercapacitors. Chem Eng J 368:1022–1032. https://doi.org/10.1016/J.CEJ.2019.02.173
Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545. https://doi.org/10.1016/j.foodhyd.2013.07.012
Shin S, Kwak H, Shin D, Hyun J (2019) Solid matrix-assisted printing for three-dimensional structuring of a viscoelastic medium surface. Nat Commun. https://doi.org/10.1038/s41467-019-12585-9
Silva MA, Leite YKC, de Carvalho CES et al (2018) Behavior and biocompatibility of rabbit bone marrow mesenchymal stem cells with bacterial cellulose membrane. PeerJ 2018:1–22. https://doi.org/10.7717/peerj.4656
Singhsa P, Narain R, Manuspiya H (2018) Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose 25:1571–1581. https://doi.org/10.1007/s10570-018-1699-1
Skiba EA, Budaeva VV, Ovchinnikova EV et al (2020) A technology for pilot production of bacterial cellulose from oat hulls. Chem Eng J 383:123128. https://doi.org/10.1016/J.CEJ.2019.123128
Song L, Shu L, Wang Y et al (2020) Metal nanoparticle-embedded bacterial cellulose aerogels via swelling-induced adsorption for nitrophenol reduction. Int J Biol Macromol 143:922–927. https://doi.org/10.1016/J.IJBIOMAC.2019.09.152
Stoica-Guzun A, Stroescu M, Jinga SI et al (2016) Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites. Int J Biol Macromol 91:1062–1072. https://doi.org/10.1016/J.IJBIOMAC.2016.06.070
Stumpf TR, Yang X, Zhang J, Cao X (2018) In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C 82:372–383. https://doi.org/10.1016/J.MSEC.2016.11.121
Sun B, Zhang Y, Li W et al (2019) Facile synthesis and light-induced antibacterial activity of ketoprofen functionalized bacterial cellulose membranes. Colloids Surf A Physicochem Eng Asp 568:231–238. https://doi.org/10.1016/J.COLSURFA.2019.01.051
Tang L, Zhao X, Feng C et al (2019) Bacterial cellulose/MXene hybrid aerogels for photodriven shape-stabilized composite phase change materials. Sol Energy Mater Sol Cells 203:110174. https://doi.org/10.1016/J.SOLMAT.2019.110174
Torgbo S, Sukyai P (2018) Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl Mater Today 11:34–49. https://doi.org/10.1016/J.APMT.2018.01.004
Torgbo S, Sukyai P (2020) Biodegradation and thermal stability of bacterial cellulose as biomaterial: the relevance in biomedical applications. Polym Degrad Stab 179:109232. https://doi.org/10.1016/j.polymdegradstab.2020.109232
Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23:2291–2314. https://doi.org/10.1007/s10570-016-0986-y
Urbina L, Algar I, García-Astrain C et al (2016) Biodegradable composites with improved barrier properties and transparency from the impregnation of PLA to bacterial cellulose membranes. J Appl Polym Sci 133:1–10. https://doi.org/10.1002/app.43669
Urbina L, Hernández-Arriaga AM, Eceiza A et al (2017) By-products of the cider production: an alternative source of nutrients to produce bacterial cellulose. Cellulose 24:2071–2082. https://doi.org/10.1007/s10570-017-1263-4
Urbina L, Guaresti O, Requies J et al (2018) Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters. Carbohydr Polym 193:362–372. https://doi.org/10.1016/j.carbpol.2018.04.007
Urbina L, Alonso-Varona A, Saralegi A et al (2019a) Hybrid and biocompatible cellulose/polyurethane nanocomposites with water-activated shape memory properties. Carbohydr Polym 216:86–96. https://doi.org/10.1016/j.carbpol.2019.04.010
Urbina L, Corcuera MÁ, Eceiza A, Retegi A (2019b) Stiff all-bacterial cellulose nanopaper with enhanced mechanical and barrier properties. Mater Lett 246:67–70. https://doi.org/10.1016/j.matlet.2019.03.005
Urbina L, Eceiza A, Gabilondo N et al (2019c) Valorization of apple waste for active packaging: multicomponent polyhydroxyalkanoate coated nanopapers with improved hydrophobicity and antioxidant capacity. Food Packag Shelf Life 21:100356. https://doi.org/10.1016/J.FPSL.2019.100356
Urbina L, Eceiza A, Gabilondo N et al (2020) Tailoring the in situ conformation of bacterial cellulose-graphene oxide spherical nanocarriers. Int J Biol Macromol 163:1249–1260. https://doi.org/10.1016/j.ijbiomac.2020.07.077
Van Zyl EM, Coburn JM (2019) Hierarchical structure of bacterial-derived cellulose and its impact on biomedical applications. Curr Opin Chem Eng 24:122–130. https://doi.org/10.1016/j.coche.2019.04.005
Velásquez-Riaño M, Bojacá V (2017) Production of bacterial cellulose from alternative low-cost substrates. Cellulose 24:2677–2698. https://doi.org/10.1007/s10570-017-1309-7
Vicente AT, Araújo A, Gaspar D et al (2017) Optoelectronics and bio devices on paper powered by solar cells. Nanostructured Sol Cells. https://doi.org/10.5772/66695
Voicu G, Jinga SI, Drosu BG, Busuioc C (2017) Improvement of silicate cement properties with bacterial cellulose powder addition for applications in dentistry. Carbohydr Polym 174:160–170. https://doi.org/10.1016/j.carbpol.2017.06.062
Vojvodić A, Komes D, Vovk I et al (2016) Compositional evaluation of selected agro-industrial wastes as valuable sources for the recovery of complex carbohydrates. Food Res Int 89:565–573. https://doi.org/10.1016/j.foodres.2016.07.023
Wang S, Jiang F, Xu X et al (2017) Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv Mater 29:1–8. https://doi.org/10.1002/adma.201702498
Wang J, Tavakoli J, Tang Y (2019) Bacterial cellulose production, properties and applications with different culture methods—a review. Carbohydr Polym 219:63–76. https://doi.org/10.1016/J.CARBPOL.2019.05.008
Weyell P, Beekmann U, Küpper C et al (2019) Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydr Polym 207:1–10. https://doi.org/10.1016/J.CARBPOL.2018.11.061
Xie Y-Y, Hu X-H, Zhang Y-W et al (2020a) Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydr Polym 229:115456. https://doi.org/10.1016/J.CARBPOL.2019.115456
Xie Y, Niu X, Yang J et al (2020b) Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int J Biol Macromol 150:480–491. https://doi.org/10.1016/J.IJBIOMAC.2020.01.291
Yang L, Chen C, Hu Y et al (2020a) Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation. J Colloid Interface Sci 562:21–28. https://doi.org/10.1016/J.JCIS.2019.12.013
Yang Y-N, Lu K-Y, Wang P et al (2020b) Development of bacterial cellulose/chitin multi-nanofibers based smart films containing natural active microspheres and nanoparticles formed in situ. Carbohydr Polym 228:115370. https://doi.org/10.1016/J.CARBPOL.2019.115370
Ye J, Zheng S, Zhang Z et al (2019) Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresour Technol 274:518–524. https://doi.org/10.1016/J.BIORTECH.2018.12.028
Zahan KA, Pa’e N, Muhamad II (2015) Monitoring the effect of pH on bacterial cellulose production and Acetobacter xylinum 0416 growth in a rotary discs reactor. Arab J Sci Eng 40:1881–1885. https://doi.org/10.1007/s13369-015-1712-z
Zang S, Zhang R, Chen H et al (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C 46:111–117. https://doi.org/10.1016/j.msec.2014.10.023
Zhai X, Lin D, Liu D, Yang X (2018) Emulsions stabilized by nanofibers from bacterial cellulose: new potential food-grade Pickering emulsions. Food Res Int 103:12–20. https://doi.org/10.1016/J.FOODRES.2017.10.030
Zhang C, Cao J, Zhao S et al (2020) Biocompatibility evaluation of bacterial cellulose as a scaffold material for tissue-engineered corneal stroma. Cellulose 27:2775–2784. https://doi.org/10.1007/s10570-020-02979-0
Zhuravleva N, Reznik A, Kiesewetter D et al (2018) Possible applications of bacterial cellulose in the manufacture of electrical insulating paper. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1124/3/031008
Zhuravleva NM, Reznik AS, Kiesewetter DV et al (2019) Improving the efficiency of power transformers insulation by modifying the dielectric paper with bacterial cellulose. J Phys Conf Ser 1236:7–11. https://doi.org/10.1088/1742-6596/1236/1/012002
Zogaj X, Nimtz M, Rohde M et al (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463. https://doi.org/10.1046/j.1365-2958.2001.02337.x
Acknowledgments
The authors thank for the financial support from the Spanish Ministry of Economy and Competitiveness (MAT2020-PID2019-105090RB-I00) and to the University of the Basque Country for the GIU18/216. L. Urbina wishes to acknowledge the University of the Basque Country (UPV/EHU) for the postdoctoral DOKBERRI grant.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors. In this experiment, we did not collect any samples of humans and animals.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Urbina, L., Corcuera, M.Á., Gabilondo, N. et al. A review of bacterial cellulose: sustainable production from agricultural waste and applications in various fields. Cellulose 28, 8229–8253 (2021). https://doi.org/10.1007/s10570-021-04020-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-021-04020-4