[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Review: nanoparticles and nanostructured materials in papermaking

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The introduction of nanoparticles (NPs) and nanostructured materials (NSMs) in papermaking originally emerged from the perspective of improving processing operations and reducing material consumption. However, a very broad range of nanomaterials (NMs) can be incorporated into the paper structure and allows creating paper products with novel properties. This review is of interdisciplinary nature, addressing the emerging area of nanotechnology in papermaking focusing on resources, chemical synthesis and processing, colloidal properties, and deposition methods. An overview of different NMs used in papermaking together with their intrinsic properties and a link to possible applications is presented from a chemical point of view. After a brief introduction on NMs classification and papermaking, their role as additives or pigments in the paper structure is described. The different compositions and morphologies of NMs and NSMs are included, based on wood components, inorganic, organic, carbon-based, and composite NPs. In a first approach, nanopaper substrates are made from fibrillary NPs, including cellulose-based or carbon-based NMs. In a second approach, the NPs can be added to a regular wood pulp as nanofillers or used in coating compositions as nanopigments. The most important processing steps for NMs in papermaking are illustrated including the internal filling of fiber lumen, LbL deposition or fiber wall modification, with important advances in the field on the in situ deposition of NPs on the paper fibers. Usually, the manufacture of products with advanced functionality is associated with complex processes and hazardous materials. A key to success is in understanding how the NMs, cellulose matrix, functional additives, and processes all interact to provide the intended paper functionality while reducing materials waste and keeping the processes simple and energy efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

CMF:

Cellulose microfiber

CNC:

Cellulose nanocrystal

CNF:

Cellulose nanofiber

CNP:

Cellulose nanoparticle

CNT:

Carbon nanotube

CNW:

Cellulose nanowhisker

DP:

Degree of polymerization

GCC:

Ground calcium carbonate

GO:

Graphene oxide

rGO:

Reduced graphene oxide

LbL:

Layer by layer

MCC:

Microcrystalline cellulose

MTM:

Montmorillonite (plate-shaped clay)

NCC:

Nanocrystalline cellulose

NMs:

Nanomaterials

NPs:

Nanoparticles

NSMs:

Nanostructured materials

PCC:

Precipitated calcium carbonate

SWCNT:

Single-wall carbon nanotube

MWCNT:

Multiwall carbon nanotube

References

  1. Janczak CM, Aspinwall CA (2012) Composite nanoparticles: the best of two worlds. Anal Bioanal Chem 402:83–89. doi:10.1007/s00216-011-5482-5

    Article  Google Scholar 

  2. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29. doi:10.1016/S1359-6454(99)00285-2

    Article  Google Scholar 

  3. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803. doi:10.1016/j.pmatsci.2011.08.003

    Article  Google Scholar 

  4. Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27:990–993. doi:10.1016/j.msec.2006.09.023

    Article  Google Scholar 

  5. Laudone GM, Matthews GP, Gane PAC (2006) Modelling the shrinkage in pigmented coatings during drying: a stick-slip mechanism. J Colloid Interface Sci 304:180–190. doi:10.1016/j.jcis.2006.08.025

    Article  Google Scholar 

  6. Smook GA (ed) (2003) Handbook for pulp and paper technologists, 3rd edn.

  7. Teisala H (2013) Multifunctional superhydrophobic nanoparticle coatings for cellulose-based substrates by liquid flame spray. Tampere University of Technology, Tampere, Finland

  8. Gill RA (1995) Fillers for papermaking. In: Thorn I, Au C (eds) Applications of wet-end paper chemistry. Springer, Dordrecht, pp 54–75

    Chapter  Google Scholar 

  9. Zhu H, Fang Z, Preston C et al (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287. doi:10.1039/C3EE43024C

    Article  Google Scholar 

  10. Ebrahimpour Kasmani J, Mahdavi S, Alizadeh A et al (2013) Physical properties and printability characteristics of mechanical printing paper with LWC. BioResources 8:3646–3656. doi:10.15376/biores.8.3.3646-3656

    Article  Google Scholar 

  11. Ogihara H, Xie J, Okagaki J, Saji T (2012) Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 28:4605–4608. doi:10.1021/la204492q

    Article  Google Scholar 

  12. Jaisai M, Baruah S, Dutta J (2012) Paper modified with ZnO nanorods—antimicrobial studies. Beilstein J Nanotechnol 3:684–691. doi:10.3762/bjnano.3.78

    Article  Google Scholar 

  13. Martins NCT, Freire CSR, Pinto RJB et al (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19:1425–1436. doi:10.1007/s10570-012-9713-5

    Article  Google Scholar 

  14. Anderson RE, Guan J, Ricard M et al (2010) Multifunctional single-walled carbon nanotube—cellulose composite paper. J Mater Chem 20:2400–2407. doi:10.1039/b924260k

    Article  Google Scholar 

  15. Small AC, Johnston JH (2009) Novel hybrid materials of magnetic nanoparticles and cellulose fibers. J Colloid Interface Sci 331:122–126. doi:10.1016/j.jcis.2008.11.038

    Article  Google Scholar 

  16. Zhu H, Zhu S, Jia Z et al (2015) Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc Natl Acad Sci USA 112:8971–8976. doi:10.1073/pnas.1502870112

    Article  Google Scholar 

  17. Julkapli NM, Bagheri S (2016) Developments in nano-additives for paper industry. J Wood Sci 62:117–130. doi:10.1007/s10086-015-1532-5

    Article  Google Scholar 

  18. Liu C, Li B, Du H et al (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724. doi:10.1016/j.carbpol.2016.06.025

    Article  Google Scholar 

  19. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. Applied Polymer Symposium (United States) p 37

  20. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466. doi:10.1002/anie.201001273

    Article  Google Scholar 

  21. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107. doi:10.1515/HF.2005.016

    Article  Google Scholar 

  22. Kumar V, Bollström R, Yang A et al (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21:3443–3456. doi:10.1007/s10570-014-0357-5

    Article  Google Scholar 

  23. Abdul Khalil HPS, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. doi:10.1016/j.carbpol.2013.08.069

    Article  Google Scholar 

  24. Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671. doi:10.1021/ma048396c

    Article  Google Scholar 

  25. Zhang W, Johnson RK, Lin Z et al (2013) In situ generated cellulose nanoparticles to enhance the hydrophobicity of paper. Cellulose 20:2935–2945. doi:10.1007/s10570-013-0062-9

    Article  Google Scholar 

  26. Pan M, Zhou X, Chen M (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioResources 8:933–943. doi:10.15376/biores.8.1.933-943

    Article  Google Scholar 

  27. Vieyra H, Figueroa-López U, Guevara-Morales A, Vergara-Porras B, Martín-Martínez ES, Aguilar-Mendez MÁ (2015) Optimized monitoring of production of cellulose nanowhiskers from opuntia ficus-indica (Nopal Cactus). Int J Polym Sci 2015:8713456

    Article  Google Scholar 

  28. Mao J, Osorio-Madrazo A, Laborie M-P (2013) Preparation of cellulose I nanowhiskers with a mildly acidic aqueous ionic liquid: reaction efficiency and whiskers attributes. Cellulose 20:1829–1840. doi:10.1007/s10570-013-9942-2

    Article  Google Scholar 

  29. Mao J, Heck B, Reiter G, Laborie MP (2015) Cellulose nanocrystals’ production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4)-mediated hydrolysis. Carbohydr Polym 117:443–451. doi:10.1016/j.carbpol.2014.10.001

    Article  Google Scholar 

  30. Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616. doi:10.1016/j.carbpol.2015.07.079

    Article  Google Scholar 

  31. Abushammala H, Goldsztayn R, Leao A, Laborie M-P (2016) Combining steam explosion with 1-ethyl-3-methylimidazlium acetate treatment of wood yields lignin-coated cellulose nanocrystals of high aspect ratio. Cellulose 23:1813–1823. doi:10.1007/s10570-016-0911-4

    Article  Google Scholar 

  32. Chuayjuljit S, Su-Uthai S, Tunwattanaseree C, Charuchinda S (2009) Preparation of microcrystalline cellulose from waste-cotton fabric for biodegradability enhancement of natural rubber sheets. J Reinf Plast Compos 28:1245–1254. doi:10.1177/0731684408089129

    Article  Google Scholar 

  33. Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183. doi:10.1007/s10570-004-1038-6

    Article  Google Scholar 

  34. Nada AAMA, El-Kady MY, Abd El-Sayed ES, Amine FM (2009) Preparation and characterization of microcrystalline cellulose (MCC). BioResources 4:1359–1371. doi:10.1016/j.jfluchem.2014.06.008

    Google Scholar 

  35. Rizkiansyah RR, Mardiyati, Steven, Suratman R (2016) Crystallinity and thermal resistance of microcrystalline cellulose prepared from manau rattan (Calamusmanan). In: AIP conference proceedings. doi:10.1063/1.4945525

  36. Kazakova EG, Demin VA (2009) A new procedure for preparing microcrystalline cellulose. Russ J Appl Chem 82:496–499. doi:10.1134/S1070427209030276

    Article  Google Scholar 

  37. Stupinska H, Iller E, Zimek Z et al (2007) An environment-friendly method to prepare microcrystalline cellulose. Fibers Text 64:167–172

    Google Scholar 

  38. Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69:607–611. doi:10.1016/j.carbpol.2007.01.019

    Article  Google Scholar 

  39. Geissler A, Biesalski M, Heinze T, Zhang K (2014) Formation of nanostructured cellulose stearoyl esters via nanoprecipitation. J Mater Chem A 2:1107–1116. doi:10.1039/c3ta13937a

    Article  Google Scholar 

  40. Hornig S, Heinze T (2008) Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromol 9:1487–1492. doi:10.1021/bm8000155

    Article  Google Scholar 

  41. Meyabadi F, Dadashian T, Sadeghi FMM, Asl GEZH (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240. doi:10.1016/j.powtec.2014.04.039

    Article  Google Scholar 

  42. Han J, Zhou C, French AD et al (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781. doi:10.1016/j.carbpol.2013.02.003

    Article  Google Scholar 

  43. Ioelovich M (2013) Nanoparticles of amorphous cellulose and their properties. Am J Nanosci Nanotechnol 1:41–45

    Article  Google Scholar 

  44. Sharma PR, Varma AJ (2013) Functional nanoparticles obtained from cellulose: engineering the shape and size of 6-carboxycellulose. Chem Commun (Camb) 49:8818–8820. doi:10.1039/c3cc44551h

    Article  Google Scholar 

  45. Wang Y, Heinze T, Zhang K (2015) Stimuli-responsive nanoparticles from ionic cellulose derivatives. Nanoscale. doi:10.1039/C5NR05862G

    Google Scholar 

  46. Nair SS, Zhu J, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2:23. doi:10.1186/s40508-014-0023-0

    Article  Google Scholar 

  47. Sharma S, Zhang X, Nair SS et al (2014) Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Adv 4:45136–45142. doi:10.1039/C4RA07469F

    Article  Google Scholar 

  48. Mertaniemi H, Laukkanen A, Teirfolk J-E et al (2012) Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces. RSC Adv 2:2882–2886. doi:10.1039/c2ra00020b

    Article  Google Scholar 

  49. Spence KL, Venditti RA, Habibi Y et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968. doi:10.1016/j.biortech.2010.02.104

    Article  Google Scholar 

  50. Hu L, Zheng G, Yao J et al (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518. doi:10.1039/C2EE23635D

    Article  Google Scholar 

  51. Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162–165. doi:10.1021/bm801065u

    Article  Google Scholar 

  52. Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585. doi:10.1021/bm800038n

    Article  Google Scholar 

  53. Luo Y, Zhang J, Li X et al (2014) The cellulose nanofibers for optoelectronic conversion and energy storage. J Nanomater 2014:1–13. doi:10.1155/2014/654512

    Google Scholar 

  54. Fang Z, Zhu H, Yuan Y et al (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14:765–773. doi:10.1021/nl404101p

    Article  Google Scholar 

  55. Bordel D, Putaux J-L, Heux L (2006) Orientation of Native cellulose in an electric field. Langmuir 22:4899–4901. doi:10.1021/la0600402

    Article  Google Scholar 

  56. Yoshiharu* N, Shigenori K, Masahisa W, Takeshi O (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30:6395–6397. doi:10.1021/MA970503Y

    Article  Google Scholar 

  57. Nan F, Chen Q, Liu P et al (2016) Iridescent graphene/cellulose nanocrystal film with water response and highly electrical conductivity. RSC Adv 6:93673–93679. doi:10.1039/C6RA20133D

    Article  Google Scholar 

  58. Luu WT, Bousfield DW, Kettle J (2011) Application of nanofibrillated cellulose as a paper surface treatment for inkjet printing. In: TAPPI Pap

  59. Oksman K, Mathew AP, Bismarck A et al (2014) Handbook of green materials. World Scientific, New York. doi:10.1142/8975

    Book  Google Scholar 

  60. Lu H, Liu Y, Leng J (2012) Carbon nanopaper enabled shape memory polymer composites for electrical actuation and multifunctionalization. Macromol Mater Eng 297:1138–1147. doi:10.1002/mame.201200235

    Article  Google Scholar 

  61. Zhao Z, Gou J, Khan A (2009) Processing and structure of carbon nanofiber paper. J Nanomater 2009:325769

    Article  Google Scholar 

  62. Roy S, Jain V, Bajpai R et al (2012) Formation of carbon nanotube bucky paper and feasibility study for filtration at the nano and molecular scale. J Phys Chem C 116:19025–19031. doi:10.1021/jp305677h

    Article  Google Scholar 

  63. Gou J (2006) Single-walled nanotube bucky paper and nanocomposite. Polym Int 55:1283–1288. doi:10.1002/pi.2079

    Article  Google Scholar 

  64. Wu Q, Zhu W, Zhang C et al (2010) Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon N Y 48:1799–1806. doi:10.1016/j.carbon.2010.01.023

    Article  Google Scholar 

  65. Deneuve A, Wang K, Janowska I et al (2011) Bucky paper with improved mechanical stability made from vertically aligned carbon nanotubes for desulfurization process. Appl Catal A Gen 400:230–237. doi:10.1016/j.apcata.2011.04.042

    Article  Google Scholar 

  66. Li Z, Xu J, O’Byrne JP et al (2012) Freestanding bucky paper with high strength from multi-wall carbon nanotubes. Mater Chem Phys 135:921–927. doi:10.1016/j.matchemphys.2012.05.080

    Article  Google Scholar 

  67. Dumée L, Germain V, Sears K et al (2011) Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. J Memb Sci 376:241–246. doi:10.1016/j.memsci.2011.04.024

    Article  Google Scholar 

  68. Vohrer U, Zschoerper NP, Koehne Y et al (2007) Plasma modification of carbon nanotubes and bucky papers. Plasma Process Polym. doi:10.1002/ppap.200732102

    Google Scholar 

  69. Yang Y, Li M, Wu Y et al (2016) Nanoscaled self-alignment of Fe3O4 nanodiscs in ultrathin rGO films with engineered conductivity for electromagnetic interference shielding. Nanoscale 8:15989–15998. doi:10.1039/C6NR04539A

    Article  Google Scholar 

  70. Shen J, Song Z, Qian X et al (2010) Nanofillers for papermaking wet end applications. BioResources 5:1328–1331. doi:10.15376/biores.5.3.1328-1331

    Google Scholar 

  71. Chauhan VS, Bhardwaj NK, Chakrabarti SK (2013) Effect of particle size of magnesium silicate filler on physical properties of paper. Can J Chem Eng 91:855–861. doi:10.1002/cjce.21708

    Article  Google Scholar 

  72. El-Sherbiny S, El-Sheikh SM, Barhoum A (2015) Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application. Powder Technol 279:290–300. doi:10.1016/j.powtec.2015.04.006

    Article  Google Scholar 

  73. El-Sheikh SM, Barhoum A, El-Sherbiny S et al (2014) Preparation of superhydrophobic nanocalcite crystals using Box–Behnken design. Arab J Chem. doi:10.1016/j.arabjc.2014.11.003

    Google Scholar 

  74. El-Sheikh SM, El-Sherbiny S, Barhoum A, Deng Y (2013) Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloids Surf A Physicochem Eng Asp 422:44–49. doi:10.1016/j.colsurfa.2013.01.020

    Article  Google Scholar 

  75. Barhoum A, Van Lokeren L, Rahier H et al (2015) Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. J Mater Sci 50:7908–7918. doi:10.1007/s10853-015-9327-z

    Article  Google Scholar 

  76. Barhoum A, Rahier H, Abou-Zaied RE et al (2014) Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS Appl Mater Interfaces 6:2734–2744. doi:10.1021/am405278j

    Article  Google Scholar 

  77. Juuti M, Koivunen K, Silvennoinen M et al (2009) Light scattering study from nanoparticle-coated pigments of paper. Colloids Surf A Physicochem Eng Asp 352:94–98. doi:10.1016/j.colsurfa.2009.10.006

    Article  Google Scholar 

  78. Enomae T, Tsujino K (2004) Application of spherical hollow calcium carbonate particles as filler and coating pigment. Appita J 57:493–494

    Google Scholar 

  79. Nypelö T, Österberg M, Laine J (2011) Tailoring surface properties of paper using nanosized precipitated calcium carbonate particles. ACS Appl Mater Interfaces 3:3725–3731. doi:10.1021/am200913t

    Article  Google Scholar 

  80. Hu Z, Zen X, Gong J, Deng Y (2009) Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating. Colloids Surf A Physicochem Eng Asp 351:65–70. doi:10.1016/j.colsurfa.2009.09.036

    Article  Google Scholar 

  81. Samyn P, Schoukens G, Stanssens D (2015) Kaolinite nanocomposite platelets synthesized by intercalation and imidization of poly(styrene-co-maleic anhydride). Materials (Basel) 8:4363–4388. doi:10.3390/ma8074363

    Article  Google Scholar 

  82. Carosio F, Cuttica F, Medina L, Berglund LA (2016) Clay nanopaper as multifunctional brick and mortar fire protection coating—wood case study. Mater Des 93:357–363. doi:10.1016/j.matdes.2015.12.140

    Article  Google Scholar 

  83. Barhoum A, Van Assche G, Rahier H et al (2017) Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism. Mater Des 119:270–276. doi:10.1016/j.matdes.2017.01.059

    Article  Google Scholar 

  84. Morsy FA, El-Sheikh SM, Barhoum A (2014) Nano-silica and SiO2/CaCO3 nanocomposite prepared from semi-burned rice straw ash as modified papermaking fillers. Arab J Chem. doi:10.1016/j.arabjc.2014.11.032

    Google Scholar 

  85. Kenttä E, Lamminmäki T, Rautkoski H, Teir S, Bacher J, Kettle J, Sarlin J (2013) Silica pigment produced from silicate mining sidestreams for ink-jet paper coating application. Nord Pulp Pap Res J 28:022–027. doi:10.3183/NPPRJ-2013-28-01-p022-027

    Article  Google Scholar 

  86. Johnston JH, McFarlane AJ, Borrmann T, Moraes J (2004) Nano-structured silicas and silicates—new materials and their applications in paper. Curr Appl Phys 4:411–414. doi:10.1016/j.cap.2003.11.061

    Article  Google Scholar 

  87. Vero N, Hribernik S, Andreozzi P, Sfiligoj-Smole M (2009) Homogeneous self-cleaning coatings on cellulose materials derived from TIP/TiO2 P25. Fibers Polym 10:716–723. doi:10.1007/s12221-010-0716-2

    Article  Google Scholar 

  88. Chauhan I, Mohanty P, Ashkarran AA et al (2014) Immobilization of titania nanoparticles on the surface of cellulose fibres by a facile single step hydrothermal method and study of their photocatalytic and antibacterial activities. RSC Adv 4:57885–57890. doi:10.1039/C4RA07372J

    Article  Google Scholar 

  89. Huang L, Chen K, Lin C et al (2011) Fabrication and characterization of superhydrophobic high opacity paper with titanium dioxide nanoparticles. J Mater Sci 46:2600–2605. doi:10.1007/s10853-010-5112-1

    Article  Google Scholar 

  90. Afsharpour M, Rad FT, Malekian H (2011) New cellulosic titanium dioxide nanocomposite as a protective coating for preserving paper-art-works. J Cult Herit 12:380–383. doi:10.1016/j.culher.2011.03.001

    Article  Google Scholar 

  91. Kim D, Ko S (2013) Catalytic and optical properties of TiO2 photoactive nanopaper prepared by using the wet-end papermaking technique. Nanosci Nanotechnol Lett 5:581–586. doi:10.1166/nnl.2013.1572

    Article  Google Scholar 

  92. Matsubara H, Takada M, Koyama S et al (1995) Photoactive TiO 2 containing paper: preparation and its photocatalytic activity under weak UV light illumination. Chem Lett 24:767–768. doi:10.1246/cl.1995.767

    Article  Google Scholar 

  93. Fujiwara K, Kuwahara Y, Sumida Y, Yamashita H (2017) Fabrication of photocatalytic paper using TiO2 nanoparticles confined in hollow silica capsules. Langmuir 33:288–295. doi:10.1021/acs.langmuir.6b04003

    Article  Google Scholar 

  94. Ye L, Filipe CDM, Kavoosi M et al (2009) Immobilization of TiO2 nanoparticles onto paper modification through bioconjugation. J Mater Chem 19:2189–2198. doi:10.1039/b818410k

    Article  Google Scholar 

  95. Baruah S, Jaisai M, Imani R et al (2010) Photocatalytic paper using zinc oxide nanorods. Sci Technol Adv Mater 11:55002. doi:10.1088/1468-6996/11/5/055002

    Article  Google Scholar 

  96. Chauhan I, Aggrawal S, Mohanty P et al (2015) ZnO nanowire-immobilized paper matrices for visible light-induced antibacterial activity against Escherichia coli. Environ Sci Nano 2:273–279. doi:10.1039/C5EN00006H

    Article  Google Scholar 

  97. Zhang X, Qin J, Xue Y et al (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596. doi:10.1038/srep04596

    Article  Google Scholar 

  98. Dong C, Cairney J, Sun Q et al (2010) Investigation of Mg(OH)2 nanoparticles as an antibacterial agent. J Nanopart Res 12:2101–2109. doi:10.1007/s11051-009-9769-9

    Article  Google Scholar 

  99. Knight CC, Ip F, Zeng C et al (2013) A highly efficient fire-retardant nanomaterial based on carbon nanotubes and magnesium hydroxide. Fire Mater 37:91–99. doi:10.1002/fam.2115

    Article  Google Scholar 

  100. Kwiatkowska A, Wojech R, Wojciak A (2014) Paper deacidification with the use of magnesium oxide nanoparticles. For Wood Technol 85:144–148

    Google Scholar 

  101. Giorgi† R, Bozzi‡ C, Dei† L et al (2005) Nanoparticles of Mg(OH)2: synthesis and application to paper conservation. Langmuir 21:8495–8501. doi:10.1021/LA050564M

    Article  Google Scholar 

  102. Zhou Z, Sun Q, Zeshan H, Deng* Y (2006) nanobelt formation of magnesium hydroxide sulfate hydrate via a soft. Chemistry Process 110:13387–13392. doi:10.1021/JP0612228

    Google Scholar 

  103. Zhou J, Li R, Liu S et al (2009) Structure and magnetic properties of regenerated cellulose/Fe3O4 nanocomposite films. J Appl Polym Sci 111:2477–2484. doi:10.1002/app.29236

    Article  Google Scholar 

  104. Mashkour M, Tajvidi M, Kimura T et al (2011) Fabricating unidirectional magnetic papers using permanent magnets to align magnetic nanoparticle covered natural cellulose fibers. BioResources 6:4731–4738. doi:10.15376/biores.6.4.4731-4738

    Google Scholar 

  105. Praveena SM, Han LS, Than LTL, Aris AZ (2016) Preparation and characterisation of silver nanoparticle coated on cellulose paper: evaluation of their potential as antibacterial water filter. J Exp Nanosci 11:1307–1319. doi:10.1080/17458080.2016.1209790

    Article  Google Scholar 

  106. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998. doi:10.1021/es103302t

    Article  Google Scholar 

  107. Gottesman R, Shukla S, Perkas N et al (2011) Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27:720–726. doi:10.1021/la103401z

    Article  Google Scholar 

  108. Amini E, Azadfallah M, Layeghi M, Talaei-Hassanloui R (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23:557–570. doi:10.1007/s10570-015-0846-1

    Article  Google Scholar 

  109. Jung H, Park M, Kang M, Jeong K-H (2016) Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules. Light Sci Appl 5:e16009. doi:10.1038/lsa.2016.9

    Article  Google Scholar 

  110. Zhao J, Wei Z, Feng X et al (2014) Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin. ACS Appl Mater Interfaces. doi:10.1021/am5026352

    Google Scholar 

  111. Chen H, Liu W (2016) Cellulose-based photocatalytic paper with Ag2O nanoparticles loaded on graphite fibers. J Biores Bioprod 1:192–198

    Google Scholar 

  112. Rae CAL (2003) Assessment of fillers for opacity improvement of printing papers—a combination of theory and laboratory studies. Appita J 56:234–237

    Google Scholar 

  113. Mathur VJB (2013) Novel silicate nano-fibers and super nano carbonates for dematerialization—basis weight reduction. Pap., 2013

  114. Mathur VJB (2004) Novel silicate “fibrous fillers” and their application in paper. In: Paper summit spring technical and international environmental conference

  115. Hu L, Choi JW, Yang Y et al (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci USA 106:21490–21494. doi:10.1073/pnas.0908858106

    Article  Google Scholar 

  116. Preston C, Fang Z, Murray J et al (2014) Silver nanowire transparent conducting paper-based electrode with high optical haze. J Mater Chem C 2:1248–1254. doi:10.1039/C3TC31726A

    Article  Google Scholar 

  117. Song Y, Jiang Y, Shi L et al (2015) Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. Nanoscale 7:13694–13701. doi:10.1039/C5NR03218K

    Article  Google Scholar 

  118. Koga H, Nogi M, Komoda N et al (2014) Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG Asia Mater 6:e93. doi:10.1038/am.2014.9

    Article  Google Scholar 

  119. Ohde H, Wai CM, Rodriguez JM (2006) The synthesis of polyacrylamide nanoparticles in supercritical carbon dioxide. Colloid Polym Sci 285:475–478. doi:10.1007/s00396-006-1582-8

    Article  Google Scholar 

  120. Bloembergen S, McLennan I, Lee DI, Leeuwen JV (2008) Paper binder performance with biobased nanoparticles. Paper 360° Magazine, pp 46–48

  121. Giezen FE, Jongboom ROJ, Feil H et al (2004) Biopolymer nanoparticles. US Patent 6,677,386

  122. Song D, Zhao Y, Dong C, Deng Y (2009) Surface modification of cellulose fibers by starch grafting with crosslinkers. J Appl Polym Sci 113:3019–3026. doi:10.1002/app.30410

    Article  Google Scholar 

  123. Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromol 11:1139–1153. doi:10.1021/bm901428y

    Article  Google Scholar 

  124. Kim HY, Park SS, Lim ST (2015) Preparation, characterization and utilization of starch nanoparticles. Colloids Surf B Biointerfaces 126:607–620. doi:10.1016/j.colsurfb.2014.11.011

    Article  Google Scholar 

  125. Kim HY, Park DJ, Kim JY, Lim ST (2013) Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydr Polym 98:295–301. doi:10.1016/j.carbpol.2013.05.085

    Article  Google Scholar 

  126. Ma X, Jian R, Chang PR, Yu J (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromol 9:3314–3320. doi:10.1021/bm800987c

    Article  Google Scholar 

  127. Chin SF, Azman A, Pang SC (2014) Size controlled synthesis of starch nanoparticles by a microemulsion method. J Nanomater 2014:763736

    Google Scholar 

  128. Chin SF, Pang SC, Tay SH (2011) Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr Polym 86:1817–1819. doi:10.1016/j.carbpol.2011.07.012

    Article  Google Scholar 

  129. Kim JY, Lim ST (2009) Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydr Polym 76:110–116. doi:10.1016/j.carbpol.2008.09.030

    Article  Google Scholar 

  130. Ji G, Luo Z, Xiao Z, Peng X (2016) Synthesis of starch nanoparticles in a novel microemulsion with two ILs substituting two phases. J Mater Sci 51:7085–7092. doi:10.1007/s10853-016-9952-1

    Article  Google Scholar 

  131. Zhou G, Luo Z, Fu X (2014) Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties. J Agric Food Chem 62:8214–8220. doi:10.1021/jf5018725

    Article  Google Scholar 

  132. Wang X, Cheng J, Ji G et al (2016) Starch nanoparticles prepared in a two ionic liquid based microemulsion system and their drug loading and release properties. RSC Adv 6:4751–4757. doi:10.1039/C5RA24495A

    Article  Google Scholar 

  133. Li X, Qin Y, Liu C et al (2016) Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: the effect of electrostatic repulsion or steric hindrance. Food Chem 199:356–363. doi:10.1016/j.foodchem.2015.12.037

    Article  Google Scholar 

  134. Bel Haaj S, Magnin A, Pétrier C, Boufi S (2013) Starch nanoparticles formation via high power ultrasonication. Carbohydr Polym 92:1625–1632. doi:10.1016/j.carbpol.2012.11.022

    Article  Google Scholar 

  135. Sun Q, Fan H, Xiong L (2014) Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods. Carbohydr Polym 106:359–364. doi:10.1016/j.carbpol.2014.02.067

    Article  Google Scholar 

  136. Liu D, Wu Q, Chen H, Chang PR (2009) Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J Colloid Interface Sci 339:117–124. doi:10.1016/j.jcis.2009.07.035

    Article  Google Scholar 

  137. Kasemwong K, Meejaiyen K, Srisiri S, Itthisoponkul T (2011) Effect of high-pressure microfluidization on the structure and properties of waxy rice starch. Thai J Agric Sci 44:408–414. doi:10.1002/star.201000123

    Google Scholar 

  138. Shi AM, Li D, Wang LJ et al (2011) Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: influence of various process parameters on particle size and stability. Carbohydr Polym 83:1604–1610. doi:10.1016/j.carbpol.2010.10.011

    Article  Google Scholar 

  139. Lin H, Qin LZ, Hong H, Li Q (2016) Preparation of starch nanoparticles via high-energy ball milling. J Nano Res 40:174–179. doi:10.4028/www.scientific.net/JNanoR.40.174

    Article  Google Scholar 

  140. Song D, Thio YS, Deng Y (2011) Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym 85:208–214. doi:10.1016/j.carbpol.2011.02.016

    Article  Google Scholar 

  141. Salam A, Lucia LA, Jameel H (2013) Synthesis, characterization, and evaluation of chitosan-complexed starch nanoparticles on the physical properties of recycled paper furnish. ACS Appl Mater Interfaces 5:11029–11037. doi:10.1021/am403261d

    Article  Google Scholar 

  142. Raafat D, Sahl H-G (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201. doi:10.1111/j.1751-7915.2008.00080.x

    Article  Google Scholar 

  143. Gällstedt M, Hedenqvist MS (2006) Packaging-related mechanical and barrier properties of pulp-fiber-chitosan sheets. Carbohydr Polym 63:46–53. doi:10.1016/j.carbpol.2005.07.024

    Article  Google Scholar 

  144. Kjellgren H, Gällstedt M, Engström G, Järnström L (2006) Barrier and surface properties of chitosan-coated greaseproof paper. Carbohydr Polym 65:453–460. doi:10.1016/j.carbpol.2006.02.005

    Article  Google Scholar 

  145. Krishna Sailaja A, Amareshwar P, Chakravarty P (2011) Different techniques used for the preparation of nanoparticles using natural polymers and their application. Int J Pharm Pharm Sci 3:45–50

    Google Scholar 

  146. Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20:291–300. doi:10.3109/1061186X.2011.654121

    Article  Google Scholar 

  147. Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 58:1423–1430. doi:10.1248/cpb.58.1423

    Article  Google Scholar 

  148. Tang ESK, Huang M, Lim LY (2003) Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm 265:103–114. doi:10.1016/S0378-5173(03)00408-3

    Article  Google Scholar 

  149. Fithriyah NH, Erdawati (2014) Mechanical properties of paper sheets coated with chitosan nanoparticle. AIP Conf Proc 1589:195–199

    Article  Google Scholar 

  150. Lin AH, Liu YM, Fing QN (2007) Free amino groups on the surface of chitosan nanoparticles and its characteristics. Yaoxue Xuebao 42:323–328

    Google Scholar 

  151. Brunel F, Vron L, David L et al (2008) A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir 24:11370–11377. doi:10.1021/la801917a

    Article  Google Scholar 

  152. Ying M, Pengtao L, Chuanling S, Liu Z (2010) Chitosan nanoparticles: preparation and application in antibacterial paper. J Macromol Sci Part B 49:994–1001

    Article  Google Scholar 

  153. Hassan EA, Hassan ML, Abou-zeid RE, El-Wakil NA (2016) Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind Crops Prod 93:219–226. doi:10.1016/j.indcrop.2015.12.006

    Article  Google Scholar 

  154. Samyn P, Deconinck M, Schoukens G et al (2012) Synthesis and characterization of imidized poly(styrene-maleic anhydride) nanoparticles in stable aqueous dispersion. Polym Adv Technol. doi:10.1002/pat.1871

    Google Scholar 

  155. Samyn P, Deconinck M, Schoukens G et al (2010) Modifications of paper and paperboard surfaces with a nanostructured polymer coating. Prog Org Coat. doi:10.1016/j.porgcoat.2010.08.008

    Google Scholar 

  156. Samyn P, Schoukens G, Stanssens D et al (2012) Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles. J Nanopart Res. doi:10.1007/s11051-012-1075-2

    Google Scholar 

  157. Samyn P, Van Nieuwkerke D, Schoukens G et al (2015) Synthesis of imidized nanoparticles containing soy oil under various reaction conditions. Eur Polym J 66:78–90. doi:10.1016/j.eurpolymj.2015.01.036

    Article  Google Scholar 

  158. Samyn P, Van Nieuwkerke D, Schoukens G et al (2015) Hybrid palm-oil/styrene-maleimide nanoparticles synthesized in aqueous dispersion under different conditions. J Microencapsul. doi:10.3109/02652048.2015.1028493

    Google Scholar 

  159. Samyn P, Van Nieuwkerke D, Rastogi V, Stanssens D (2015) Tuning thermal release kinetics of soy oil from organic nanoparticles using variable synthesis conditions. Particuology. doi:10.1016/j.partic.2015.12.008

    Google Scholar 

  160. Ichiura H, Morikawa M, Fujiwara K (2005) Preparation of microcapsules that produce color in response to humidity for use in intelligent functional paper. J Mater Sci 40:1987–1991. doi:10.1007/s10853-005-1221-7

    Article  Google Scholar 

  161. Zhang F, Ma J, Xu Q et al (2016) Hollow casein-based polymeric nanospheres for opaque coatings. ACS Appl Mater Interfaces 8:11739–11748. doi:10.1021/acsami.6b00611

    Article  Google Scholar 

  162. Obeso CG, Sousa MP, Song W et al (2013) Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates. Colloids Surf A Physicochem Eng Asp 416:51–55. doi:10.1016/j.colsurfa.2012.09.052

    Article  Google Scholar 

  163. Rastogi VK, Samyn P (2016) Synthesis of Polyhydroxybutyrate particles with micro-to-nanosized structures and application as protective coating for packaging papers. Nanomater 7:5. doi:10.3390/nano7010005

    Article  Google Scholar 

  164. Shi J, Alves NM, Mano JF (2008) Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods. Bioinspir Biomim 3:34003. doi:10.1088/1748-3182/3/3/034003

    Article  Google Scholar 

  165. Zhao W, Simmons B, Singh S et al (2016) From lignin association to nano-/micro-particle preparation: extracting higher value of lignin. Green Chem 18:5693–5700. doi:10.1039/C6GC01813K

    Article  Google Scholar 

  166. Gilca IA, Popa VI, Crestini C (2015) Obtaining lignin nanoparticles by sonication. Ultrason Sonochem 23:369–375. doi:10.1016/j.ultsonch.2014.08.021

    Article  Google Scholar 

  167. Yearla SR, Padmasree K (2015) Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants. J Exp Nanosci 8080:1–14. doi:10.1080/17458080.2015.1055842

    Google Scholar 

  168. Richter AP, Bharti B, Armstrong HB et al (2016) Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties. Langmuir 32:6468–6477. doi:10.1021/acs.langmuir.6b01088

    Article  Google Scholar 

  169. Frangville C, Rutkevičius M, Richter AP et al (2012) Fabrication of environmentally biodegradable lignin nanoparticles. ChemPhysChem 13:4235–4243. doi:10.1002/cphc.201200537

    Article  Google Scholar 

  170. Lievonen M, Valle-Delgado JJ, Mattinen M-L et al (2016) A simple process for lignin nanoparticle preparation. Green Chem 18:1416–1422. doi:10.1039/C5GC01436K

    Article  Google Scholar 

  171. Gilca IA, Ghitescu RE, Puitel AC, Popa VI (2014) Preparation of lignin nanoparticles by chemical modification. Iran Polym J 23:355–363. doi:10.1007/s13726-014-0232-0

    Article  Google Scholar 

  172. Westbye P, Köhnke T, Glasser W, Gatenholm P (2007) The influence of lignin on the self-assembly behaviour of xylan rich fractions from birch (Betula pendula). Cellulose 14:603–613. doi:10.1007/s10570-007-9178-0

    Article  Google Scholar 

  173. Garcia RB, Nagashima T, Praxedes AKC et al (2001) Preparation of micro and nanoparticles from corn cobs xylan. Polym Bull 46:371–379. doi:10.1007/s002890170045

    Article  Google Scholar 

  174. Kumar S, Upadhyaya JS, Negi YS (2010) Preparation of nanoparticles from corn cobs by chemical treatment methods. BioResources 5:1292–1300

    Google Scholar 

  175. Daus S, Heinze T (2010) Xylan-based nanoparticles: prodrugs for ibuprofen release. Macromol Biosci 10:211–220. doi:10.1002/mabi.200900201

    Article  Google Scholar 

  176. Yang Q, Takeuchi M, Saito T, Isogai A (2014) Formation of nanosized islands of dialkyl β-ketoester bonds for efficient hydrophobization of a cellulose film surface. Langmuir 30:8109–8118. doi:10.1021/la501706t

    Article  Google Scholar 

  177. Quan C, Werner O, Wågberg L, Turner C (2009) Generation of superhydrophobic paper surfaces by a rapidly expanding supercritical carbon dioxide-alkyl ketene dimer solution. J Supercrit Fluids 49:117–124. doi:10.1016/j.supflu.2008.11.015

    Article  Google Scholar 

  178. Werner O, Quan C, Turner C et al (2010) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17:187–198. doi:10.1007/s10570-009-9374-1

    Article  Google Scholar 

  179. Schlosser H (2008) Nano disperse cellulose and nano fibril cellulose—new products for the preparation and improvement of paper and cartons. Wochenblatt für Pap 136:252–260

    Google Scholar 

  180. Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314. doi:10.1007/s10570-007-9167-3

    Article  Google Scholar 

  181. Ooi Y, Hanasaki I, Mizumura D, Matsuda Y (2017) Suppressing the coffee-ring effect of colloidal droplets by dispersed cellulose nanofibers. Sci Technol Adv Mater 18:316–324. doi:10.1080/14686996.2017.1314776

    Article  Google Scholar 

  182. Kim B, Lu Y, Kim T et al (2014) Carbon nanotube coated paper sensor for damage diagnosis. ACS Nano 8:12092–12097. doi:10.1021/nn5037653

    Article  Google Scholar 

  183. Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110. doi:10.1016/j.compscitech.2013.06.014

    Article  Google Scholar 

  184. Zeng X, Deng L, Yao Y et al (2016) Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J Mater Chem C 4:6037–6044. doi:10.1039/C6TC01501H

    Article  Google Scholar 

  185. Wang X-S (2011) Preparation of mono-dispersed carbon nanotubes (CNTs) with dodecyl itaconate and its utilization in paper-making. Engineering 3:50–54

    Article  Google Scholar 

  186. Pérez-Madrigal MM, Edo MG, Alemán C (2016) Powering the future: application of cellulose-based materials for supercapacitors. Green Chem 18:5930–5956. doi:10.1039/C6GC02086K

    Article  Google Scholar 

  187. Hu S, Rajamani R, Yu X (2012) Flexible solid-state paper based carbon nanotube supercapacitor. Appl Phys Lett 100:104103. doi:10.1063/1.3691948

    Article  Google Scholar 

  188. Agarwal M, Xing, Q, Kotov, NA, Lvov YM, Varahramyan K (2008) Integrated composite of carbon nanotubes and cellulose wood microfibers for conductive paper. In: PMSE 121 preprints, vol 99, pp 200–201

  189. Shen J, Song Z, Qian X, Liu W (2009) Modification of papermaking grade fillers: a brief review. BioResources 4:1190–1209. doi:10.15376/BIORES.4.3.1190-1209

    Google Scholar 

  190. Kim DS, Lee CK (2002) Surface modification of precipitated calcium carbonate using aqueous fluosilicic acid. Appl Surf Sci 202:15–23. doi:10.1016/S0169-4332(02)00534-2

    Article  Google Scholar 

  191. Gamelas JA (2014) Increase of the filler content in papermaking by using a silica-coated PCC filler. Nord Pulp Pap Res J 29:240–245. doi:10.3183/NPPRJ-2014-29-02-p240-245

    Article  Google Scholar 

  192. Lourenço AF, Gamelas JAF, Zscherneck C, Ferreira PJ (2013) Evaluation of silica-coated PCC as new modified filler for papermaking. Ind Eng Chem Res 52:5095–5099. doi:10.1021/ie3035477

    Article  Google Scholar 

  193. Koivunen K, Niskanen I, Peiponen K-E, Paulapuro H (2009) Novel nanostructured PCC fillers. J Mater Sci 44:477–482. doi:10.1007/s10853-008-3095-y

    Article  Google Scholar 

  194. He M, Cho B-U, Won JM (2016) Effect of precipitated calcium carbonate—cellulose nanofibrils composite filler on paper properties. Carbohydr Polym 136:820–825. doi:10.1016/j.carbpol.2015.09.069

    Article  Google Scholar 

  195. Hwang HS, Kim NH, Lee SG et al (2011) Facile fabrication of transparent superhydrophobic surfaces by spray deposition. ACS Appl Mater Interfaces 3:2179–2183. doi:10.1021/am2004575

    Article  Google Scholar 

  196. Tang B, Yao Y, Li J et al (2015) Functional application of noble metal nanoparticles in situ synthesized on ramie fibers. Nanoscale Res Lett 10:366. doi:10.1186/s11671-015-1074-1

    Article  Google Scholar 

  197. Padalkar S, Capadona JR, Rowan SJ et al (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502. doi:10.1021/la904439p

    Article  Google Scholar 

  198. Dong BH, Hinestroza JP (2009) Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl Mater Interfaces 1:797–803. doi:10.1021/am800225j

    Article  Google Scholar 

  199. Raza A, Saha B (2014) In situ silver nanoparticles synthesis in agarose film supported on filter paper and its application as highly efficient SERS test stripes. Forensic Sci Int 237:e42–e46. doi:10.1016/j.forsciint.2014.01.019

    Article  Google Scholar 

  200. Pourreza N, Golmohammadi H, Naghdi T, Yousefi H (2015) Green in situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron 74:353–359. doi:10.1016/j.bios.2015.06.041

    Article  Google Scholar 

  201. Wu J, Zheng Y, Song W et al (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771. doi:10.1016/j.carbpol.2013.10.093

    Article  Google Scholar 

  202. Hu W, Chen S, Li X et al (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng C 29:1216–1219. doi:10.1016/j.msec.2008.09.017

    Article  Google Scholar 

  203. Ullah MW, Ul-Islam M, Khan S et al (2016) In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system. RSC Adv 6:22424–22435. doi:10.1039/C5RA26704H

    Article  Google Scholar 

  204. Huang JY, Li SH, Ge MZ et al (2015) Robust superhydrophobic TiO2 @fabrics for UV shielding, self-cleaning and oil–water separation. J Mater Chem A 3:2825–2832. doi:10.1039/C4TA05332J

    Article  Google Scholar 

  205. Chauhan I, Mohanty P (2015) In situ decoration of TiO2 nanoparticles on the surface of cellulose fibers and study of their photocatalytic and antibacterial activities. Cellulose 22:507–519. doi:10.1007/s10570-014-0480-3

    Article  Google Scholar 

  206. Aggrawal S, Chauhan I, Mohanty P (2015) Immobilization of Bi2O3 nanoparticles on the cellulose fibers of paper matrices and investigation of its antibacterial activity against E. coli in visible light. Mater Express 5:429–436. doi:10.1166/mex.2015.1260

    Article  Google Scholar 

  207. Bumbudsanpharoke N, Choi J, Ko S (2016) In situ bio-inspired synthesis of gold nanoparticles on cellulose fiber. J Nanosci Nanotechnol 16:7479–7484

    Article  Google Scholar 

  208. Li X, Chen S, Hu W et al (2009) In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydr Polym 76:509–512. doi:10.1016/j.carbpol.2008.11.014

    Article  Google Scholar 

  209. Zheng W, Hu W, Chen S et al (2014) High photocatalytic properties of zinc oxide nanoparticles with amidoximated bacterial cellulose nanofibers as templates. Chin J Polym Sci 32:169–176. doi:10.1007/s10118-014-1386-0

    Article  Google Scholar 

  210. Ghule K, Ghule AV, Chen B-J, Ling Y-C (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8:1034–1041. doi:10.1039/b605623g

    Article  Google Scholar 

  211. Chen X, Liu Y, Lu H et al (2010) In-situ growth of silica nanoparticles on cellulose and application of hierarchical structure in biomimetic hydrophobicity. Cellulose 17:1103–1113. doi:10.1007/s10570-010-9445-3

    Article  Google Scholar 

  212. Liu S, Zhou J, Zhang L (2011) In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose 18:663–673. doi:10.1007/s10570-011-9513-3

    Article  Google Scholar 

  213. Kaushik M, Moores A, Ni Y et al (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637. doi:10.1039/C5GC02500A

    Article  Google Scholar 

  214. Rastogi VK, Samyn P (2014) Novel production method for in situ hydrophobization of a microfibrillated cellulose network. Mater Lett. 120:196–199. doi:10.1016/j.matlet.2014.01.060

    Article  Google Scholar 

  215. Rastogi VK, Stanssens D, Samyn P (2016) Reaction efficiency and retention of poly(styrene-co-maleimide) nanoparticles deposited on fibrillated cellulose surfaces. Carbohydr Polym. 141:244–252. doi:10.1016/j.carbpol.2016.01.018

    Article  Google Scholar 

  216. Littunen K, Hippi U, Johansson LS et al (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047. doi:10.1016/j.carbpol.2010.12.064

    Article  Google Scholar 

  217. Gindl-Altmutter W, Obersriebnig M, Veigel S, Liebner F (2015) Compatibility between cellulose and hydrophobic polymer provided by microfibrillated lignocellulose. Chemsuschem 8:87–91. doi:10.1002/cssc.201402742

    Article  Google Scholar 

  218. Middleton SR, Scallan AM (1985) Lumen-loaded paper pulp: mechanism of filler-to-fibre bonding. Colloids Surf 16:309–322. doi:10.1016/0166-6622(85)80261-4

    Article  Google Scholar 

  219. Zakaria S, Ong BH, Ahmad SH et al (2005) Preparation of lumen-loaded kenaf pulp with magnetite (Fe3O4). Mater Chem Phys 89:216–220. doi:10.1016/j.matchemphys.2003.12.026

    Article  Google Scholar 

  220. Chia CH, Zakaria S, Ahamd S et al (2006) Preparation of magnetic paper from kenaf: lumen loading and in situ synthesis method. Am J Appl Sci 3:1750–1754. doi:10.3844/ajassp.2006.1750.1754

    Article  Google Scholar 

  221. Pinto RJB, Marques PAAP, Martins MA et al (2007) Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J Colloid Interface Sci 312:506–512. doi:10.1016/j.jcis.2007.03.043

    Article  Google Scholar 

  222. Li H, Fu S, Peng L (2013) Surface modification of cellulose fibers by layer-by-layer self-assembly of lignosulfonates and TiO2 nanoparticles: effect on photocatalytic abilities and paper properties. Fibers Polym 14:1794–1802. doi:10.1007/s12221-013-1794-8

    Article  Google Scholar 

  223. Ding B, Kim J, Kimura E, Shiratori S (2004) nanoparticles and poly(acrylic acid) on electrospun nanofibres. Nanotechnology 15:913–917. doi:10.1088/0957-4484/15/8/007

    Article  Google Scholar 

  224. Agarwal M, Lvov Y, Varahramyan K (2006) Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17:5319–5325. doi:10.1088/0957-4484/17/21/006

    Article  Google Scholar 

  225. Wistrand I, Lingström R, Wågberg L (2007) Preparation of electrically conducting cellulose fibres utilizing polyelectrolyte multilayers of poly(3,4-ethylenedioxythiophene):poly(styrene sulphonate) and poly(allyl amine). Eur Polym J 43:4075–4091. doi:10.1016/j.eurpolymj.2007.03.053

    Article  Google Scholar 

  226. Lu Z, Eadula S, Zheng Z et al (2007) Layer-by-layer nanoparticle coatings on lignocellulose wood microfibers. Colloids Surf A Physicochem Eng Asp 292:56–62. doi:10.1016/j.colsurfa.2006.06.008

    Article  Google Scholar 

  227. Hollertz R, Ariza D, Pitois C, Wagberg L (2015) Dielectric response of kraft paper from fibres modified by silica nanoparticles. In: 2015 IEEE conference on electrical insulation and dielectric phenomena. IEEE, pp 459–462

  228. Peng L, Meng Y, Li H (2016) Facile fabrication of superhydrophobic paper with improved physical strength by a novel layer-by-layer assembly of polyelectrolytes and lignosulfonates-amine. Cellulose 23:2073–2085. doi:10.1007/s10570-016-0910-5

    Article  Google Scholar 

  229. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71. doi:10.1116/1.2815690

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Samyn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samyn, P., Barhoum, A., Öhlund, T. et al. Review: nanoparticles and nanostructured materials in papermaking. J Mater Sci 53, 146–184 (2018). https://doi.org/10.1007/s10853-017-1525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1525-4

Keywords