Abstract
It is a fascinating phenomenon in nuclear physics that states with a pronounced few-body structure can emerge from the complex dynamics of many nucleons. Such halo or cluster states often appear near the boundaries of nuclear stability. As such, they are an important part of the experimental program beginning at the Facility for Rare Isotope Beams (FRIB). A concerted effort of theory and experiment is necessary both to analyze experiments involving effective few-body states, as well as to constrain and refine theories of the nuclear force in light of new data from these experiments. As a contribution to exactly this effort, this paper compiles a collection of “perspectives” that emerged out of the Topical Program “Few-body cluster structures in exotic nuclei and their role in FRIB experiments” that was held at FRIB in August 2022 and brought together theorists and experimentalists working on this topic.
Similar content being viewed by others
References
FRIB400 The Scientific Case for the 400 MeV/u Energy Upgrade of FRIB. https://frib.msu.edu/_files/pdfs/frib400_final.pdf
Experimental Equipment Needs for the Facility for Rare Isotope Beams (FRIB). https://fribusers.org/documents/2014/FRIB_EQUIPMENT_whitepaper.pdf
National Research Council: Nuclear Physics: Exploring the Heart Of Matter. The National Academies Press, Washington (2013). https://doi.org/10.17226/13438
The 2015 Nuclear Science Advisory Committee: Reaching for the horizon: The 2015 long range plan for nuclear science (2015)
J. Bradt, D. Bazin, F. Abu-Nimeh, T. Ahn, Y. Ayyad, S. Beceiro Novo, L. Carpenter, M. Cortesi, M.P. Kuchera, W.G. Lynch, W. Mittig, S. Rost, N. Watwood, J. Yurkon, Commissioning of the active-target time projection chamber. Nucl. Instrum. Methods. Phys. Res. A 875, 9 (2017)
H. Hergert, A guided tour of ab initio nuclear many-body theory. Front. Phys. 8, 379 (2020)
H.-W. Hammer, S. König, U. van Kolck, Nuclear effective field theory: status and perspectives. Rev. Mod. Phys. 92, 66 (2020)
P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo, A. Calci, Unified ab initio approaches to nuclear structure and reactions. Phys. Scr. 91, 053002 (2016)
S. Quaglioni, P. Navrátil, Ab initio many-body calculations of \({ n - {}^{3}\text{ H }, n - {}^{4}\text{ He }, p - {}^{3,4}\text{ He } }\), and \({ n - {}^{10}\text{ Be } }\) scattering. Phys. Rev. Lett. 101, 092501 (2008)
S. Quaglioni, P. Navrátil, Ab initio many-body calculations of nucleon-nucleus scattering. Phys. Rev. C 79, 044606 (2009)
D. Lee, Lattice simulations for few- and many-body systems. Prog. Part. Nucl. Phys. 63, 117 (2009)
K.M. Nollett, Ab initio calculations of nuclear widths via an integral relation. Phys. Rev. C 86, 044330 (2012)
A.R. Flores, K.M. Nollett, Variational Monte Carlo calculations of \({ n + {}^{3}\text{ H } }\) scattering (2022)
S.R. Stroberg, J.D. Holt, A. Schwenk, J. Simonis, Ab initio limits of atomic nuclei. Phys. Rev. Lett. 126, 022501 (2021)
E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427 (2005)
I. Rotter, A continuum shell model for the open quantum mechanical nuclear system. Rep. Prog. Phys. 54, 635 (1991)
N. Michel, W. Nazarewicz, M. Płoszajczak, T. Vertse, Shell model in the complex energy plane. J. Phys. G Nucl. Part. Phys. 36, 013101 (2009)
A. Volya, V. Zelevinsky, Discrete and continuum spectra in the unified shell model approach. Phys. Rev. Lett. 94, 052501 (2005)
S. Baroni, P. Navrátil, S. Quaglioni, Unified ab initio approach to bound and unbound states: no-core shell model with continuum and its application to \({ {}^{7}\text{ He } }\). Phys. Rev. C 87, 034326 (2013)
M. Matsuo, T. Nakatsukasa, Open problems in nuclear structure near drip lines. J. Phys. G Nucl. Part. Phys. 37, 064017 (2010)
N. Michel, W. Nazarewicz, J. Okołowicz, M. Płoszajczak, Open problems in the theory of nuclear open quantum systems. J. Phys. G Nucl. Part. Phys. 37, 064042 (2010)
J. Okołowicz, M. Płoszajczak, I. Rotter, Dynamics of quantum systems embedded in a continuum. Phys. Rep. 374, 271 (2003)
T. Otsuka, A. Gade, O. Sorlin, T. Suzuki, Y. Utsuno, Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020)
K. Fossez, W. Nazarewicz, Y. Jaganathen, N. Michel, M. Płoszajczak, Nuclear rotation in the continuum. Phys. Rev. C 93, 011305 (2016)
K. Fossez, J. Rotureau, N. Michel, Q. Liu, W. Nazarewicz, Single-particle and collective motion in unbound deformed \({ {}^{39}\text{ Mg } }\). Phys. Rev. C 94, 054302 (2016)
K. Fossez, J. Rotureau, W. Nazarewicz, Energy spectrum of neutron-rich helium isotopes: complex made simple. Phys. Rev. C 98, 061302 (2018)
K. Kravvaris, A. Volya, Study of nuclear clustering from an ab initio perspective. Phys. Rev. Lett. 119, 062501 (2017)
S.M. Wang, W. Nazarewicz, Puzzling two-proton decay of \({ {}^{67}\text{ Kr } }\). Phys. Rev. Lett. 120, 212502 (2018)
K. Fossez, J. Rotureau, Density matrix renormalization group description of the island of inversion isotopes \({ {}^{28-33}\text{ F } }\). Phys. Rev. C 106, 034312 (2022)
A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Structure and reactions of quantum halos. Rev. Mod. Phys. 76, 215 (2004)
T. Frederico, A. Delfino, L. Tomio, M.T. Yamashita, Universal aspects of light halo nuclei. Prog. Part. Nucl. Phys. 67, 939 (2012)
I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215 (2013)
M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, U. Meißner, Microscopic clustering in light nuclei. Rev. Mod. Phys. 90, 035004 (2018)
K. Ikeda, N. Takigawa, H. Horiuchi, The systematic structure-change into the molecule-like structures in the self-conjugate \({ 4n }\) nuclei. Prog. Theor. Phys. Suppl. E68, 464 (1968)
W. von Oertzen, M. Freer, Y. Kanada-En’yo, Nuclear clusters and nuclear molecules. Phys. Rep. 432, 43 (2006)
M. Freer, The clustered nucleus-cluster structures in stable and unstable nuclei. Rep. Prog. Phys. 70, 2149 (2007)
J. Okołowicz, W. Nazarewicz, M. Płoszajczak, Toward understanding the microscopic origin of nuclear clustering. Fortschr. Phys. 61, 66 (2013)
J. Okołowicz, M. Płoszajczak, W. Nazarewicz, On the origin of nuclear clustering. Prog. Theor. Phys. Suppl. 196, 230 (2012)
D. Guillemaud-Mueller, J.C. Jacmart, E. Kashy, A. Latimier, A.C. Mueller, F. Pougheon, A. Richard, Y.E. Penionzhkevich, A.G. Artuhk, A.V. Belozyorov, S.M. Lukyanov, R. Anne, P. Bricault, C. Détraz, M. Lewitowicz, Y. Zhang, Y.S. Lyutostansky, M.V. Zverev, D. Bazin, W.D. Schmidt-Ott, Particle stability of the isotopes \({ {}^{26}\text{ O } }\) and \({ {}^{32}\text{ Ne } }\) in the reaction 44 MeV/nucleon \({ {}^{48}\text{ Ca } + \text{ Ta } }\). Phys. Rev. C 41, 937 (1990)
B. Blank, M. Płoszajczak, Two-proton radioactivity. Rep. Prog. Phys. 71, 046301 (2008)
M. Pfützner, M. Karny, L.V. Grigorenko, K. Riisager, Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567 (2012)
A. Spyrou, Z. Kohley, T. Baumann, D. Bazin, B.A. Brown, G. Christian, P.A. DeYoung, J.E. Finck, N. Frank, E. Lunderberg, S. Mosby, W.A. Peters, S. Schiller, J.K. Smith, J. Snyder, M.J. Strongman, M. Thoennessen, A. Volya, First observation of ground state dineutron decay: \({ {}^{16}\text{ Be } }\). Phys. Rev. Lett. 108, 102501 (2012)
M. Thoennessen, Z. Kohley, A. Spyrou, E. Lunderberg, P.A. DeYoung, H. Attanayake, T. Baumann, D. Bazin, B.A. Brown, G. Christian, D. Divaratne, S.M. Grimes, A. Haagsma, J.E. Finck, N. Frank, B. Luther, S. Mosby, T. Nagi, G.F. Peaslee, W.A. Peters, A. Schiller, J.K. Smith, J. Snyder, M. Strongman, A. Volya, Observation of ground-state two-neutron decay. Acta Phys. Pol. 44, 543 (2013)
C.W. Johnson, K.D. Launey, N. Auerbach, S. Bacca, B.R. Barrett, C. Brune, M.A. Caprio, P. Descouvemont, W.H. Dickhoff, C. Elster, P.J. Fasano, K. Fossez, H. Hergert, M. Hjorth-Jensen, L. Hlophe, B. Hu, R.M. Id Betan, A. Idini, S. König, K. Kravvaris, D. Lee, J. Lei, P. Maris, A. Mercenne, K. Minomo, R. Navarro Pérez, W. Nazarewicz, F.M. Nunes, M. Płoszajczak, S. Quaglioni, J. Rotureau, G. Rupak, A.M. Shirokov, I. Thompson, J.P. Vary, A. Volya, F. Xu, V. Zelevinsky, X. Zhang, White paper: From bound states to the continuum. J. Phys. G Nucl. Part. Phys. 47, 123001 (2020)
A. Volya, V. Zelevinsky, Continuum shell model. Phys. Rev. C 74, 064314 (2006)
J. Rotureau, N. Michel, W. Nazarewicz, M. Płoszajczak, J. Dukelsky, Density matrix renormalisation group approach for many-body open quantum systems. Phys. Rev. Lett. 97, 110603 (2006)
G. Hagen, D.J. Dean, M. Hjorth-Jensen, T. Papenbrock, Complex coupled-cluster approach to an ab initio description of open quantum systems. Phys. Lett. B 656, 169 (2007)
J. Carbonell, A. Deltuva, A.C. Fonseca, R. Lazauskas, Bound state techniques to solve the multiparticle scattering problem. Prog. Part. Nucl. Phys. 74, 55 (2014)
Y. Jaganathen, N. Michel, M. Płoszajczak, Gamow shell model description of proton scattering on \({ {}^{18}\text{ Ne } }\). Phys. Rev. C 89, 034624 (2014)
K. Fossez, N. Michel, M. Płoszajczak, Y. Jaganathen, R.M. Id Betan, Description of the proton and neutron radiative capture reactions in the gamow shell model. Phys. Rev. C 91, 034609 (2015)
A. Ono, H. Horiuchi, T. Maruyama, A. Ohnishi, Fragment formation studied with antisymmetrized version of molecular dynamics with two-nucleon collisions. Phys. Rev. Lett. 68, 2898 (1992)
Y. Kanada-En’yo, H. Horiuchi, Structure of light unstable nuclei studied with antisymmetrized molecular dynamics. Prog. Theor. Phys. Suppl. 142, 205 (2001)
H. Feldmeier, J. Schnack, Molecular dynamics for fermions. Rev. Mod. Phys. 72, 655 (2000)
K.D. Launey, T. Dytrych, J.P. Draayer, Symmetry-guided large-scale shell-model theory. Prog. Part. Nucl. Phys. 89, 101 (2016)
H. Feshbach, Unified theory of nuclear reactions. Ann. Phys. 5, 390 (1958)
I.J. Thompson, F.M. Nunes, Nuclear Reactions for Astrophysics: Principles Calculation and Applications of Low-energy Reactions (Cambridge University Press, Cambridge, 2009)
D. Baye, P. Capel, Breakup reaction models for two- and three-cluster projectiles, in Clusters in Nuclei, vol. 2, vol. 848, ed. by C. Beck (Springer, Berlin, 2012). https://doi.org/10.1007/978-3-642-24707-1_3
L. Hlophe, K. Kravvaris, S. Quaglioni, Quantifying uncertainties due to irreducible three-body forces in deuteron-nucleus reactions. arXiv:2208.10568 (2022)
M. Theeten, D. Baye, P. Descouvemont, Comparison of local, semi-microscopic, and microscopic three-cluster models. Phys. Rev. C 74, 14 (2006)
M.J. Dinmore, N.K. Timofeyuk, J.S. Al-Khalili, Three-body optical potentials in \({ (d, p) }\) reactions and their influence on indirect study of stellar nucleosynthesis. Phys. Rev. C 104, 12 (2021)
R.C. Johnson, Three-body model of the \({ d+A }\) system in an antisymmetrized, translationally invariant many nucleon theory. Phys. Rev. C 104, 18 (2021)
N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, M. Yahiro, Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions. Phys. Rep. 154, 04 (1987)
M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimura, M. Kawai, Chapter III. Effects of deuteron virtual breakup on deuteron elastic and inelastic scattering. Prog. Theor. Phys. Supp. 89, 32–8 (1986)
M. Kawai, Chapter II. Formalism of the method of coupled discretized continuum channel. Prog. Theor. Phys. Supp. 89, 11 (1986)
K. Ogata, M. Yahiro, Y. Iseri, T. Matsumoto, M. Kamimura, New coupled-channel approach to nuclear and Coulomb breakup reactions. Phys. Rev. C 68, 7 (2003)
R.J. Glauber, High energy collision theory, in Lecture in Theoretical Physics, vol. 1, ed. by W.E. Brittin, L.G. Dunham (Interscience, New York, 1959), p.315
P.G. Hansen, J.A. Tostevin, Direct reactions with exotic nuclei. Annu. Rev. Nucl. Part. Sci. 53, 61 (2003)
D. Baye, P. Capel, G. Goldstein, Collisions of halo nuclei within a dynamical Eikonal approximation. Phys. Rev. Lett. 95, 4 (2005)
R.C. Johnson, P.C. Tandy, An approximate three-body theory of deuteron stripping. Nucl. Phys. A 235, 4 (1974)
N.K. Timofeyuk, R.C. Johnson, Theory of deuteron stripping and pick-up reactions for nuclear structure studies. Prog. Part. Nucl. Phys. 111, 103738 (2020)
P. Descouvemont, Low-energy \({ ^{11}\text{ Li }+p }\) and \({ ^{11}\text{ Li }+d }\) scattering in a multicluster model. Phys. Rev. C 101, 11 (2020)
P. Capel, D. Baye, Y. Suzuki, Coulomb-corrected eikonal description of the breakup of halo nuclei. Phys. Rev. C 78, 10 (2008)
G. Potel, A. Idini, F. Barranco, E. Vigezzi, R.A. Broglia, Cooper pair transfer in nucl. Rep. Prog. Phys. 76, 106301 (2013)
A.M. Moro, J.A. Lay, Interplay between valence and core excitation mechanisms in the breakup of halo nuclei. Phys. Rev. Lett. 109, 5 (2012)
A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. 713, 231 (2003)
F.D. Becchetti, G.W. Greenlees, Nucleon-nucleus optical-model parameters, \({ A>40 }\), \({ E<50 }\) MeV. Phys. Rev. 182, 1190 (1969)
C.A. Bertulani, H.-W. Hammer, U. van Kolck, Effective field theory for halo nuclei: shallow \({ p }\)-wave states. Nucl. Phys. A 712, 37 (2002)
E. Ryberg, C. Forssén, H.-W. Hammer, L. Platter, Effective field theory for proton halo nuclei. Phys. Rev. C 89, 014325 (2014)
C. Ji, C. Elster, D.R. Phillips, \({ {}^{6}\text{ He } }\) nucleus in halo effective field theory. Phys. Rev. C 90, 044004 (2014)
H.-W. Hammer, C. Ji, D.R. Phillips, Effective field theory description of halo nuclei. J. Phys. G Nucl. Part. Phys. 44, 103002 (2017)
P. Capel, D.R. Phillips, H.-W. Hammer, Dissecting reaction calculations using halo effective field theory and ab initio input. Phys. Rev. C 98, 034610 (2018)
T. Papenbrock, Effective theory for deformed nuclei. Nucl. Phys. A 852, 36 (2011)
T. Papenbrock, H.A. Weidenmüller, Effective field theory for finite systems with spontaneously broken symmetry. Phys. Rev. C 89, 014334 (2014)
T. Papenbrock, H.A. Weidenmüller, Effective field theory of emergent symmetry breaking in deformed atomic nuclei. J. Phys. G Nucl. Part. Phys. 42, 106103 (2015)
C. Hebborn, F.M. Nunes, G. Potel, W.H. Dickhoff, J.W. Holt, M.C. Atkinson, R.B. Baker, C. Barbieri, G. Blanchon, M. Burrows, R. Capote, P. Danielewicz, M. Dupuis, C. Elster, J.E. Escher, L. Hlophe, A. Idini, H. Jayatissa, B.P. Kay, K. 1200 Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G. Perdikakis, C.D. Pruitt, G.H. Sargsyan, I.J. Thompson,M. Vorabbi, T.R. Whitehead, Optical potentials for the rare-isotope beam era. J. Phys G, in press (2023)
A. Volya, V. Zelevinsky, Exploring quantum dynamics in an open many-body system: transition to superradiance. J. Opt. B Quantum Semiclass. Opt. 5, 450 (2003)
E. Garrido, A.S. Jensen, D.V. Fedorov, Rotational bands in the continuum illustrated by \({ {}^{8}\text{ Be } }\) results. Phys. Rev. C 88, 024001 (2013)
T. Dytrych, K.D. Launey, J.P. Draayer, D.J. Rowe, J.L. Wood, G. Rosensteel, C. Bahri, D. Langr, R.B. Baker, Physics of nuclei: key role of an emergent symmetry. Phys. Rev. Lett. 124, 6 (2020)
B.R. Mottelson, Nobel lectures. Physics 1971–1980 (1992)
J.P. Elliott, Collective motion in the nuclear shell model. I. Classification schemes for states of mixed configurations. Proc. R. Soc. A 245, 128 (1958)
K. Heyde, J.L. Wood, Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467 (2011)
J.L. Wood, 1. Nuclear Collectivity—Its Emergent Nature Viewed from Phenomenology and Spectroscopy, p. 3
D.J. Rowe, J.L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010)
A.E. Stuchbery, J.L. Wood, To shell model, or not to shell model, that is the question. Physics 4, 773 (2022)
S. Weinberg, Nuclear forces from chiral Lagrangians. Phys. Lett. B 251, 92 (1990)
C. Ordóñez, U. van Kolck, Chiral Lagrangians and nuclear forces. Phys. Lett. B 291, 64 (1992)
T. Papenbrock, H.A. Weidenmüller, Effective field theory for deformed atomic nuclei. Phys. Scr. 91, 053004 (2016)
Yu-Xuan Luo, K. Fossez, Quan Liu, Jian-You. Guo, Role of quadrupole deformation and continuum effects in the “island of inversion” nuclei \({ {}^{28,29,31}\text{ F } }\). Phys. Rev. C 104, 014307 (2021)
J.M. Eisenberg, W. Greiner, Nuclear Theory. Excitation Mechanisms of the Nucleus (Netherlands, 1976)
S.R. Stroberg, A. Calci, H. Hergert, J.D. Holt, S.K. Bogner, R. Roth, A. Schwenk, Nucleus-dependent valence-space approach to nuclear structure. Phys. Rev. Lett. 118, 6 (2017)
G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Coupled-cluster computations of atomic nuclei. Rep. Progress Phys. 77, 096302 (2014)
S.R. Stroberg, J. Henderson, G. Hackman, P. Ruotsalainen, G. Hagen, J.D. Holt, Systematics of \({ E2 }\) strength in the \({ sd }\) shell with the valence-space in-medium similarity renormalization group. Phys. Rev. C 105, 10 (2022)
E. Ramos-Cordoba, P. Salvador, E. Matito, Separation of dynamic and nondynamic correlation. Phys. Chem. Chem. Phys. 18, 4023 (2016)
J.M. Yao, J. Engel, L.J. Wang, C.F. Jiao, H. Hergert, Generator-coordinate reference states for spectra and \({ 0\nu \beta \beta }\) decay in the in-medium similarity renormalization group. Phys. Rev. C 98, 11 (2018)
G. Hagen, S.J. Novario, Z.H. Sun, T. Papenbrock, G.R. Jansen, J.G. Lietz, T. Duguet, A. Tichai, Angular-momentum projection in coupled-cluster theory: structure of \({ ^{34}\text{ Mg } }\). Phys. Rev. C 105, 23 (2022)
K.D. Launey, A. Mercenne, T. Dytrych, Nuclear dynamics and reactions in the ab initio symmetry-adapted framework. Annu. Rev. Nucl. Part. Sci. 71, 253 (2021)
P. Ruotsalainen, J. Henderson, G. Hackman, G.H. Sargsyan, K.D. Launey, A. Saxena, P.C. Srivastava, S.R. Stroberg, T. Grahn, J. Pakarinen, G.C. Ball, R. Julin, P.T. Greenlees, J. Smallcombe, C. Andreoiu, N. Bernier, M. Bowry, M. Buckner, R. Caballero-Folch, A. Chester, S. Cruz, L.J. Evitts, R. Frederick, A.B. Garnsworthy, M. Holl, A. Kurkjian, D. Kisliuk, K.G. Leach, E. McGee, J. Measures, D. Mücher, J. Park, F. Sarazin, J.K. Smith, D. Southall, K. Starosta, C.E. Svensson, K. Whitmore, M. Williams, C.Y. Wu, Isospin symmetry in \({ B(E2) }\) values: Coulomb excitation study of \({ ^{21}\text{ Mg } }\). Phys. Rev. C 99, 7 (2019)
G.H. Sargsyan, K.D. Launey, M.T. Burkey, A.T. Gallant, N.D. Scielzo, G. Savard, A. Mercenne, T. Dytrych, D. Langr, L. Varriano, B. Longfellow, T.Y. Hirsh, J.P. Draayer, Impact of clustering on the \({ ^{8}\text{ Li } }\)\({ \beta }\) decay and recoil form factors. Phys. Rev. Lett. 128, 7 (2022)
A.C. Dreyfuss, K.D. Launey, J.E. Escher, G.H. Sargsyan, R.B. Baker, T. Dytrych, J.P. Draayer, Clustering and \({ \alpha }\)-capture reaction rate from ab initio symmetry-adapted descriptions of \({ ^{20}\text{ Ne } }\). Phys. Rev. C 102, 14 (2020)
J.P. Draayer, Y. Leschber, S.C. Park, R. Lopez, Representations of U(3) in U(\({ N }\)). Comput. Phys. Commun. 56, 279 (1989)
J.R. Draayer, K.J. Weeks, Shell-model description of the low-energy structure of strongly deformed nuclei. Phys. Rev. Lett. 51, 1422 (198)
G. Rosensteel, D.J. Rowe, Nuclear Sp(3, r) model. Phys. Rev. Lett. 38, 10 (1977)
D.J. Rowe, The emergence and use of symmetry in the many-nucleon model of atomic nuclei. in Emergent Phenomena in Atomic Nuclei from Large-scale Modeling: a Symmetry-guided Perspective (World Scientific Publishing Co., 2017), p. 65
E.D. Johnson, G.V. Rogachev, V.Z. Goldberg, S. Brown, D. Robson, A.M. Crisp, P.D. Cottle, C. Fu, J. Giles, B.W. Green, K.W. Kemper, K. Lee, B.T. Roeder, R.E. Tribble, Extreme \({ \alpha }\)-clustering in the \({ {}^{18}\text{ O } }\) nucleus. Eur. Phys. J. A 42, 135 (2009)
S. Kubono, Nuclear clustering aspects in astrophysics, in Atomic and Nuclear Clusters. ed. by G.S. Anagnostatos, W. von Oertzen (Springer, Berlin, 1995), p.73
P. Descouvemont, Cluster models in nuclear astrophysics. J. Phys. G Nucl. Part. Phys. 35, 014006 (2007)
Y.P. Shen, B. Guo, W.P. Liu, Alpha-cluster transfer reactions: a tool for understanding stellar helium burning. Prog. Part. Nucl. Phys. 119, 103857 (2021)
P.M. Endt, Spectroscopic factors for single-nucleon transfer in the \({ A = 21-44 }\) region. Atom. Data Nucl. Data Tab. 19, 23 (1977)
R.B. Wiringa, S. Pastore, S.C. Pieper, G.A. Miller, Charge-symmetry breaking forces and isospin mixing in \({ {}^{8}\text{ Be } }\). Phys. Rev. C 88, 044333 (2013)
Y. Kanada-En’yo, M. Kimura, A. Ono, Antisymmetrized molecular dynamics and its applications to cluster phenomena. Prog. Theor. Exp. Phys. 2012, 01–202 (2012)
S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T.A. Lähde, T. Luu, U. Meißner, Ab initio alpha-alpha scattering. Nature 528, 111 (2015)
S. Elhatisari, N. Li, A. Rokash, J.M. Alarcón, D. Du, N. Klein, Bing-nan Lu, U. Meißner, E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, G. Rupak, Nuclear binding near a quantum phase transition. Phys. Rev. Lett. 117, 132501 (2016)
K. Kravvaris, A. Volya, Quest for superradiance in atomic nuclei. AIP Conf. Proc. 1912, 020010 (2017)
S. Elhatisari, E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, N. Li, B. Lu, U. Meißner, G. Rupak, Ab initio calculations of the isotopic dependence of nuclear clustering. Phys. Rev. Lett. 119, 6 (2017)
J.-P. Ebran, E. Khan, T. Nikšić, D. Vretenar, How atomic nuclei cluster. Nature 487, 344 (2012)
M. von Tresckow, M. Rudigier, T.M. Shneidman, T. Kröll, M. Boromiza, C. Clisu, C. Costache, D. Filipescu, N.M. Florea, I. Gheorghe, K. Gladnishki, A. Ionescu, D. Kocheva, R. Lică, N. Mărginean, R. Mărginean, K.R. Mashtakov, C. Mihai, R.E. Mihai, A. Negret, C.R. Nita, A. Olacel, A. Oprea, S. Pascu, G. Rainovski, T. Sava, M. Scheck, P. Spagnoletti, C. Sotty, L. Stan, I. Stiru, S. Toma, A. Turturică, S. Ujeniuc, New evidence for alpha clustering structure in the ground state band of \(^{212}\)Po. Phys. Lett. B 821, 136624 (2021)
Y. Alhassid, M. Gai, G.F. Bertsch, Radiative width of molecular-cluster states. Phys. Rev. Lett. 49, 0 (1982)
K. Hencken, G. Baur, D. Trautmann, A cluster version of the GGT sum rule. Nucl. Phys. A 733, 10 (2004)
M.A. Caprio, P.J. Fasano, P. Maris, Robust ab initio prediction of nuclear electric quadrupole observables by scaling to the charge radius. Phys. Rev. C 105, 7 (2022)
P. Capel, R.C. Johnson, F.M. Nunes, One-neutron halo structure by the ratio method. Phys. Lett. B 705, 15 (2011)
F. Bonaiti, S. Bacca, G. Hagen, Ab initio coupled-cluster calculations of ground and dipole excited states in \({ ^{8}\text{ He } }\). Phys. Rev. C 105, 9 (2022)
S. Bacca, N. Barnea, G. Hagen, G. Orlandini, T. Papenbrock, First principles description of the giant dipole resonance in \({ ^{16}\text{ O } }\). Phys. Rev. Lett. 111, 5 (2013)
S. Bacca, N. Barnea, G. Hagen, M. Miorelli, G. Orlandini, T. Papenbrock, Giant and pigmy dipole resonances in \({ ^{4}\text{ He } }\), \({ ^{16,22}\text{ O } }\), and \({ ^{40}\text{ Ca } }\) from chiral nucleon-nucleon interactions. Phys. Rev. C 90, 12 (2014)
D.L. Canham, H.-W. Hammer, Universal properties and structure of halo nuclei. Eur. Phys. J. A 37, 367 (2008)
M. Fukuda, T. Ichihara, N. Inabe, T. Kubo, H. Kumagai, T. Nakagawa, Y. Yano, I. Tanihata, M. Adachi, K. Asahi, M. Kouguchi, M. Ishihara, H. Sagawa, S. Shimoura, Neutron halo in \({ {}^{11}\text{ Be } }\) studied via reaction cross section. Phys. Lett. B 268, 339 (1991)
T. Misu, W. Nazarewicz, S. Åberg, Deformed nuclear halos. Nucl. Phys. A 614, 44 (1997)
D. Suzuki, H. Iwasaki, H.J. Ong, N. Imai, H. Sakurai, T. Nakao, N. Aoi, H. Baba, S. Bishop, Y. Ichikawa, M. Ishihara, Y. Kondo, T. Kubo, K. Kurita, T. Motobayashi, T. Nakamura, T. Okumura, T.K. Onishi, S. Ota, M.K. Suzuki, S. Takeuchi, Y. Togano, Y. Yanagisawa, Lifetime measurements of excited states in \({ {}^{17}\text{ C } }\): possible interplay between collectivity and halo effects. Phys. Lett. B 666, 222 (2008)
T. Nakamura, N. Kobayashi, Y. Kondo, Y. Satou, N. Aoi, H. Baba, S. Deguchi, N. Fukuda, J. Gibelin, N. Inabe, M. Ishihara, D. Kameda, Y. Kawada, T. Kubo, K. Kusaka, A. Mengoni, T. Motobayashi, T. Ohnishi, M. Ohtake, N.A. Orr, H. Otsu, T. Otsuka, A. Saito, H. Sakurai, S. Shimoura, T. Sumikama, H. Takeda, E. Takeshita, M. Takechi, S. Takeuchi, K. Tanaka, K.N. Tanaka, N. Tanaka, Y. Togano, Y. Utsuno, K. Yoneda, A. Yoshida, K. Yoshida, Halo structure of the island of inversion nucleus \({ {}^{31}\text{ Ne } }\). Phys. Rev. Lett. 103, 262501 (2009)
M. Takechi, T. Ohtsubo, M. Fukuda, D. Nishimura, T. Kuboki, T. Suzuki, T. Yamaguchi, A. Ozawa, T. Moriguchi, H. Ooishi, D. Nagae, H. Suzuki, S. Suzuki, T. Izumikawa, T. Sumikama, M. Ishihara, H. Geissel, N. Aoi, R. Chen, D. Fang, N. Fukuda, I. Hachiuma, N. Inabe, Y. Ishibashi, Y. Ito, D. Kameda, T. Kubo, K. Kusaka, M. Lantz, Y. Ma, K. Matsuta, M. Mihara, Y. Miyashita, S. Momota, K. Namihira, M. Nagashima, Y. Ohkuma, T. Ohnishi, M. Ohtake, K. Ogawa, H. Sakurai, Y. Shimbara, T. Suda, H. Takeda, S. Takeuchi, K. Tanaka, R. Watanabe, M. Winkler, Y. Yanagisawa, Y. Yasuda, K. Yoshinaga, A. Yoshida, K. Yoshida, Interaction cross sections for \({ \text{ Ne } }\) isotopes towards the island of inversion and halo structures of \({ {}^{29}\text{ Ne } }\) and \({ {}^{31}\text{ Ne } }\). Phys. Lett. B 707, 357 (2012)
K.S., Becker, K.D. Launey, A. Ekström, T. Dytrych, Ab Initio symmetry-adapted EVC emulator for studying emergent collectivity and clustering in nuclei. Front. Phys. 11 (2023)
K.S. Becker, et al. (in preparation) (2022)
C. Hebborn, G. Hupin, K. Kravvaris, S. Quaglioni, P. Navrátil, P. Gysbers, Ab initio prediction of the \({ ^{4}\text{ He }(d,\gamma )^{6}\text{ Li } }\) big bang radiative capture. Phys. Rev. Lett. 129, 5 (2022)
A. Gnech, M. Viviani, L.E. Marcucci, Calculation of the \({ ^{6}\text{ Li } }\) ground state within the hyperspherical harmonic basis. Phys. Rev. C 102, 19 (2020)
D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, E. Rrapaj, Eigenvector continuation with subspace learning. Phys. Rev. Lett. 121, 032501 (2018)
S. König, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, Eigenvector continuation as an efficient and accurate emulator for uncertainty quantification. Phys. Lett. B 810, 135814 (2020)
A. Ekström, G. Hagen, Global sensitivity analysis of bulk properties of an atomic nucleus. Phys. Rev. Lett. 123, 252501 (2019)
H.L. Crawford, P. Fallon, A.O. Macchiavelli, R.M. Clark, B.A. Brown, J.A. Tostevin, D. Bazin, N. Aoi, P. Doornenbal, M. Matsushita, H. Scheit, D. Steppenbeck, S. Takeuchi, H. Baba, C.M. Campbell, M. Cromaz, E. Ideguchi, N. Kobayashi, Y. Kondo, G. Lee, I.Y. Lee, J. Lee, K. Li, S. Michimasa, T. Motobayashi, T. Nakamura, S. Ota, S. Paschalis, M. Petri, T. Sako, H. Sakurai, S. Shimoura, M. Takechi, Y. Togano, H. Wang, K. Yoneda, Shell and shape evolution at \({ N = 28 }\): the \({ {}^{40}\text{ Mg } }\) ground state. Phys. Rev. C 89, 041303 (2014)
H.L. Crawford, P. Fallon, A.O. Macchiavelli, P. Doornenbal, N. Aoi, F. Browne, C.M. Campbell, S. Chen, R.M. Clark, M.L. Cortés, M. Cromaz, E. Ideguchi, M.D. Jones, R. Kanungo, M. MacCormick, S. Momiyama, I. Murray, M. Niikura, S. Paschalis, M. Petri, H. Sakurai, M. Salathe, P. Schrock, D. Steppenbeck, S. Takeuchi, Y.K. Tanaka, R. Taniuchi, H. Wang, K. Wimmer, First spectroscopy of the near drip-line nucleus \({ {}^{40}\text{ Mg } }\). Phys. Rev. Lett. 122, 052501 (2019)
A.O. Macchiavelli, H.L. Crawford, P. Fallon, R.M. Clark, A. Poves, Weak binding effects on the structure of \({ {}^{40}\text{ Mg } }\). Eur. Phys. J. A 58, 66 (2022)
P. Navrátil, V.G. Gueorguiev, J.P. Vary, W.E. Ormand, A. Nogga, Structure of \({ A = 10-13 }\) nuclei with two- plus three-nucleon interaction from chiral effective field theory. Phys. Rev. Lett. 99, 042501 (2007)
E.A. McCutchan, C.J. Lister, M. Elvers, D. Savran, J.P. Greene, T. Ahmed, T. Ahn, N. Cooper, A. Heinz, R.O. Hughes, G. Ilie, B. Pauerstein, D. Radeck, N. Shenkov, V. Werner, Precise \({ \gamma }\)-ray intensity measurements in \({ {}^{10}\text{ B } }\). Phys. Rev. C 86, 057306 (2012)
J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, K.E. Schmidt, R.B. Wiringa, Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067 (2015)
E. Lunderberg, P.A. DeYoung, Z. Kohley, H. Attanayake, T. Baumann, D. Bazin, G. Christian, D. Divaratne, S.M. Grimes, A. Haagsma, J.E. Finck, N. Frank, B. Luther, S. Mosby, T. Nagi, G.F. Peaslee, A. Schiller, J. Snyder, A. Spyrou, M.J. Strongman, M. Thoennessen, Evidence for the ground-state resonance of \({ {}^{26}\text{ O } }\). Phys. Rev. Lett. 108, 142503 (2012)
Z. Kohley, T. Baumann, D. Bazin, G. Christian, P.A. DeYoung, J.E. Finck, N. Frank, M. Jones, E. Lunderberg, B. Luther, S. Mosby, T. Nagi, J.K. Smith, J. Snyder, A. Spyrou, M. Thoennessen, Study of two-neutron radioactivity in the decay of \({ {}^{26}\text{ O } }\). Phys. Rev. Lett. 110, 152501 (2013)
C. Caesar, J. Simonis, T. Adachi, Y. Aksyutina, J. Alcantara, S. Altstadt, H. Alvarez-Pol, N. Ashwood, T. Aumann, V. Avdeichikov, M. Barr, S. Beceiro, D. Bemmerer, J. Benlliure, C.A. Bertulani, K. Boretzky, M.J.G. Borge, G. Burgunder, M. Caamano, E. Casarejos, W. Catford, J. Cederkäll, S. Chakraborty, M. Chartier, L. Chulkov, D. Cortina-Gil, U. Datta Pramanik, P. Diaz Fernandez, I. Dillmann, Z. Elekes, J. Enders, O. Ershova, A. Estrade, F. Farinon, L.M. Fraile, M. Freer, M. Freudenberger, H.O.U. Fynbo, D. Galaviz, H. Geissel, R. Gernhäuser, P. Golubev, D. Gonzalez Diaz, J. Hagdahl, T. Heftrich, M. Heil, M. Heine, A. Heinz, A. Henriques, M. Holl, J.D. Holt, G. Ickert, A. Ignatov, B. Jakobsson, H.T. Johansson, B. Jonson, N. Kalantar-Nayestanaki, R. Kanungo, A. Kelic-Heil, R. Knöbel, T. Kröll, R. Krücken, J. Kurcewicz, M. Labiche, C. Langer, T. Le Bleis, R. Lemmon, O. Lepyoshkina, S. Lindberg, J. Machado, J. Marganiec, V. Maroussov, J. Menéndez, M. Mostazo, A. Movsesyan, A. Najafi, T. Nilsson, C. Nociforo, V. Panin, A. Perea, S. Pietri, R. Plag, A. Prochazka, A. Rahaman, G. Rastrepina, R. Reifarth, G. Ribeiro, M.V. Ricciardi, C. Rigollet, K. Riisager, M. Röder, D. Rossi, J. Sanchez del Rio, D. Savran, H. Scheit, A. Schwenk, H. Simon, O. Sorlin, V. Stoica, B. Streicher, J. Taylor, O. Tengblad, S. Terashima, R. Thies, Y. Togano, E. Uberseder, J. Van de Walle, P. Velho, V. Volkov, A. Wagner, F. Wamers, H. Weick, M. Weigand, C. Wheldon, G. Wilson, C. Wimmer, J.S. Winfield, P. Woods, D. Yakorev, M.V. Zhukov, A. Zilges, M. Zoric, K. Zuber, (R3B collaboration): Beyond the neutron drip line: the unbound oxygen isotopes \({ {}^{25}\text{ O } }\) and \({ {}^{26}\text{ O } }\). Phys. Rev. C 88, 034313 (2013)
Y. Kondo, T. Nakamura, R. Tanaka, R. Minakata, S. Ogoshi, N.A. Orr, N.L. Achouri, T. Aumann, H. Baba, F. Delaunay, P. Doomenbal, N. Fukuda, J. Gibelin, J.W. Hwang, N. Inabe, T. Isobe, D. Kameda, D. Kanno, S. Kim, N. Kobayashi, T. Kobayashi, T. Kubo, S. Leblond, J. Lee, F.M. Marqués, T. Motobayashi, D. Murai, T. Murakami, K. Muto, T. Nakashima, N. Nakatsuka, A. Navin, S. Nishi, H. Otsu, H. Sato, Y. Satou, Y. Shimizu, H. Suzuki, K. Takahashi, H. Takeda, S. Takeuchi, Y. Togano, A.G. Tuff, M. Vandebrouck, K. Yoneda, Nucleus \({ {}^{26}\text{ O } }\): a barely unbound system beyond the drip line. Phys. Rev. Lett. 116, 102503 (2016)
T. Al Kalanee, J. Gibelin, P. Roussel-Chomaz, N. Keeley, D. Beaumel, Y. Blumenfeld, B. Fernández-Domínguez, C. Force, L. Gaudefroy, A. Gillibert, J. Guillot, H. Iwasaki, S. Krupko, V. Lapoux, W. Mittig, X. Mougeot, L. Nalpas, E. Pollacco, K. Rusek, T. Roger, H. Savajols, N. de Séréville, S. Sidorchuk, D. Suzuki, I. Strojek, N.A. Orr, Structure of unbound neutron-rich \({ {}^{9}\text{ He } }\) studied using single-neutron transfer. Phys. Rev. C 88, 034301 (2013)
M. Vorabbi, A. Calci, P. Navrátil, M.K.G. Kruse, S. Quaglioni, G. Hupin, Structure of the exotic \({ {}^{9}\text{ He } }\) nucleus from the no-core shell model with continuum. Phys. Rev. C 97, 034314 (2018)
D. Votaw, P.A. DeYoung, T. Baumann, A. Blake, J. Boone, J. Brown, D. Chrisman, J.E. Finck, N. Frank, J. Gombas, P. Guèye, J. Hinnefeld, H. Karrick, A.N. Kuchera, H. Liu, B. Luther, F. Ndayisabye, M. Neal, J. Owens-Fryar, J. Pereira, C. Persch, T. Phan, T. Redpath, W.F. Rogers, S. Stephenson, K. Stiefel, C. Sword, A. Wantz, M. Thoennessen, Low-lying level structure of the neutron-unbound \({ N = 7 }\) isotones. Phys. Rev. C 102, 014325 (2020)
F. Barranco, G. Potel, E. Vigezzi, R.A. Broglia, \({ ^{9}\text{ Li }(d, p) }\) reaction as a specific probe of \({ ^{10}\text{ Li } }\), the paradigm of parity-inverted nuclei around the \({ N = 6 }\) closed shell. Phys. Rev. C 101, 8 (2020)
V. Efimov, Is a qualitative approach to the three-body problem useful? Comments Nucl. Part. Phys. 19, 271 (1990)
A.E.A. Amorim, T. Frederico, L. Tomio, Universal aspects of Efimov states and light halo nuclei. Phys. Rev. C 56, 0 (1997)
H.-W. Hammer, Theory of halo nuclei. arXiv:2203.13074 (2022)
F. Bringas, M.T. Yamashita, T. Frederico, Triatomic continuum resonances for large negative scattering lengths. Phys. Rev. A 69, 040702 (2004)
A. Deltuva, Energies and widths of Efimov states in the three-boson continuum. Phys. Rev. C 102, 034003 (2020)
S. Dietz, H.-W. Hammer, S. König, A. Schwenk, Three-body resonances in pionless effective field theory. Phys. Rev. C 105, 064002 (2022)
E. Hiyama, R. Lazauskas, F.M. Marqués, J. Carbonell, Modeling \({ ^{19}\text{ B } }\) as a \({ ^{17}\text{ B }-n-n }\) three-body system in the unitary limit. Phys. Rev. C 100, 5 (2019)
M. Duer et al., Observation of a correlated free four-neutron system. Nature 606, 682 (2022)
L. Moschini, P. Capel, Reliable extraction of the \({ dB(\text{ E1})/dE }\) for \({ ^{11}\text{ Be } }\) from its breakup at 520 MeV/nucleon. Phys. Lett. B 790, 371 (2019)
L. Moschini, J. Yang, P. Capel, \({ ^{15}\text{ C } }\): from halo effective field theory structure to the study of transfer, breakup, and radiative-capture reactions. Phys. Rev. C 100, 044615 (2019)
P. Capel, D.R. Phillips, H.-W. Hammer, Simulating core excitation in breakup reactions of halo nuclei using an effective three-body force. Phys. Lett. B 825, 136847 (2022)
C. Hebborn, P. Capel, Halo effective field theory analysis of one-neutron knockout reactions of be11 and c15. Phys. Rev. C 104, 024616 (2021)
G.A. Baker, Neutron matter model. Phys. Rev. C 60, 6 (1999)
B.D. Esry, C.H. Greene, H. Suno, Threshold laws for three-body recombination. Phys. Rev. A 65, 4 (2001)
D.J.P.J. von Stecher, C.H. Greene, Signatures of universal four-body phenomena and their relation to the Efimov effect. Nat. Phys. 5, 233201 (2009)
T. Kraemer, M. Mark, P. Waldburger, J.G. Danzl, C. Chin, B. Engeser, A.D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl, R. Grimm, Evidence for Efimov quantum states in an ultracold gas of Caesium atoms. Nature 440, 4 (2006)
A. Zenesini, B. Huang, M. Berninger, S. Besler, H.-C. Nägerl, F. Ferlaino, R. Grimm, C.H. Greene, J. von Stecher, Resonant five-body recombination in an ultracold gas of bosonic atoms. N. J. Phys. 15, 043040 (2013)
J.P. D’Incao, S.T. Rittenhouse, N.P. Mehta, C.H. Greene, Dimer-dimer collisions at finite energies in two-component fermi gases. Phys. Rev. A 79, 4 (2009)
J. von Stecher, C.H. Greene, D. Blume, Energetics and structural properties of trapped two-component fermi gases. Phys. Rev. A 77, 20 (2008)
J. von Stecher, C.H. Greene, Spectrum and dynamics of the BCS-BEC crossover from a few-body perspective. Phys. Rev. Lett. 99, 4 (2007)
A. Kievsky, M. Gattobigio, L. Girlanda, M. Viviani, Efimov physics and connections to nuclear physics. Annu. Rev. Nucl. Part. Sci. 71 (2021)
E. Garrido, C. Romero-Redondo, A. Kievsky, M. Viviani, Integral relations and the adiabatic expansion method for 1+2 reactions above the breakup threshold: helium trimers with soft-core potentials. Phys. Rev. A 86, 9 (2012)
M. Viviani, L. Girlanda, A. Kievsky, L.E. Marcucci, \({ n+^{3}\text{ H } }\), \({ p+^{3}\text{ He } }\), \({ p+^{3}\text{ H } }\), and \({ n+^{3}\text{ He } }\) scattering with the hyperspherical harmonic method. Phys. Rev. C 102, 32 (2020)
M. Viviani, E. Filandri, L. Girlanda, C. Gustavino, A. Kievsky, L.E. Marcucci, R. Schiavilla, \({ X17 }\) boson and the \({ ^{3}\text{ H }(p, e^+ e^-)^{4}\text{ He } }\) and \({ ^{3}\text{ He }(n, e^+ e^-)^{4}\text{ He } }\) processes: a theoretical analysis. Phys. Rev. C 105, 30 (2022)
M.D. Higgins, C.H. Greene, A. Kievsky, M. Viviani, Nonresonant density of states enhancement at low energies for three or four neutrons. Phys. Rev. Lett. 125, 6 (2020)
M.D. Higgins, C.H. Greene, A. Kievsky, M. Viviani, Comprehensive study of the three- and four-neutron systems at low energies. Phys. Rev. C 103, 12 (2021)
C. Romero-Redondo, E. Garrido, D.V. Fedorov, A.S. Jensen, Three-body structure of low-lying \({ ^{12}\text{ Be } }\) states. Phys. Rev. C 77, 15 (2008)
E. Garrido, A.S. Jensen, D.V. Fedorov, J.G. Johansen, Three-body properties of low-lying \({ {}^{12}\text{ Be } }\) resonances. Phys. Rev. C 86, 12 (2012)
S.T. Rittenhouse, J. von Stecher, J.P. D’Incao, N.P. Mehta, C.H. Greene, The hyperspherical four-fermion problem. J. Phys. B Atom. Mol. Opt. Phys. 44, 172001 (2011)
D. Blume, C.H. Greene, Monte Carlo hyperspherical description of helium cluster excited states. J. Chem. Phys. 112, 067 (2000)
A.J. Yates, D. Blume, Structural properties of \({ ^{4}\text{ He}_{N} }\)\({ (N = 2-10) }\) clusters for different potential models at the physical point and at unitarity. Phys. Rev. A 105, 14 (2022)
K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, M. Assie, H. Baba, T. Baba, D. Beaumel, M. Dozono, T. Fujii, N. Fukuda, S. Go, F. Hammache, E. Ideguchi, N. Inabe, M. Itoh, D. Kameda, S. Kawase, T. Kawabata, M. Kobayashi, Y. Kondo, T. Kubo, Y. Kubota, M. Kurata-Nishimura, C.S. Lee, Y. Maeda, H. Matsubara, K. Miki, T. Nishi, S. Noji, S. Sakaguchi, H. Sakai, Y. Sasamoto, M. Sasano, H. Sato, Y. Shimizu, A. Stolz, H. Suzuki, M. Takaki, H. Takeda, S. Takeuchi, A. Tamii, L. Tang, H. Tokieda, M. Tsumura, T. Uesaka, K. Yako, Y. Yanagisawa, R. Yokoyama, K. Yoshida, Candidate resonant tetraneutron state populated by the \({ ^{4}\text{ He }(^{8}\text{ He },^{8}\text{ Be}) }\) reaction. Phys. Rev. Lett. 116, 5 (2016)
L.D. Faddeev, Mathematical aspects of the three-body problem in quantum scattering theory. Zh. Eksp. Teor. Fiz 39, 1459 (196)
E. Alt, P. Grassberger, W. Sandhas, Reduction of the three-particle collision problem to multi-channel two-particle Lippmann–Schwinger equations. Nucl. Phys. B 2, 180 (1967)
A. Deltuva, A. Fonseca, P. Sauer, Momentum-space treatment of the Coulomb interaction in three-nucleon reactions with two protons. Phys. Rev. C 71, 054005 (2005)
A. Deltuva, A. Fonseca, A. Kievsky, S. Rosati, P. Sauer, M. Viviani, Benchmark calculation for proton-deuteron elastic scattering observables including the Coulomb interaction. Phys. Rev. C 71, 064003 (2005)
A. Deltuva, Coulomb force effects in low-energy \({ \alpha }\)-deuteron scattering. Phys. Rev. C 74, 064001 (2006)
A. Deltuva, A. Moro, E. Cravo, F.M. Nunes, A. Fonseca, Three-body description of direct nuclear reactions: comparison with the continuum discretized coupled channels method. Phys. Rev. C 76, 064602 (2007)
S.P. Merkuriev, On the three-body Coulomb scattering problem. Ann. Phys. 130, 26 (1980)
R. Lazauskas, J. Carbonell, Application of the complex-scaling method to few-body scattering. Phys. Rev. C 84, 034002 (2011)
A. Deltuva, A.C. Fonseca, R. Lazauskas, in Faddeev Equation Approach for Three-Cluster Nuclear Reactions. ed. by C. Beck (Springer, Cham, 2014), p.1
J. Nuttall, H.L. Cohen, Method of complex coordinates for three-body calculations above the breakup threshold. Phys. Rev. 188, 1542 (1966)
E. Balslev, J.M. Combes, Spectral properties of many-body Schroedinger operators with dilatation-analytic interactions. Commun. Math. Phys. 22, 280 (1971)
A.M. Mukhamedzhanov, E.O. Alt, G.V. Avakov, Momentum space integral equations for three charged particles: nondiagonal kernels. Phys. Rev. C 61, 064006 (2000)
A.M. Mukhamedzhanov, E.O. Alt, G.V. Avakov, Momentum space integral equations for three charged particles: diagonal kernels. Phys. Rev. C 63, 044005 (2001)
A.M. Mukhamedzhanov, V. Eremenko, A.I. Sattarov, Generalized Faddeev equations in the AGS form for deuteron stripping with explicit inclusion of target excitations and Coulomb interaction. Phys. Rev. C 86, 034001 (2012)
E.O. Alt, P. Grassberger, W. Sandhas, Treatment of the three- and four-nucleon systems by a generalized separable-potential model. Phys. Rev. C 1, 85 (1970)
A. Deltuva, A.C. Fonseca, Four-body calculation of proton-\(^3\)He scattering. Phys. Rev. Lett. 98, 162502 (2007)
A. Deltuva, A.C. Fonseca, Four-nucleon scattering: ab initio calculations in momentum space. Phys. Rev. C 75, 014005 (2007)
R. Lazauskas, Application of the complex-scaling method to four-nucleon scattering above break-up threshold. Phys. Rev. C 86, 044002 (2012)
R. Lazauskas, Solution of the \({ n-^{4}\text{ He } }\) elastic scattering problem using the Faddeev–Yakubovsky equations. Phys. Rev. C 97, 044002 (2018)
M. Ichimura, N. Austern, C.M. Vincent, Equivalence of post and prior sum rules for inclusive breakup reactions. Phys. Rev. C 32, 0 (1985)
J. Lei, A.M. Moro, Reexamining closed-form formulae for inclusive breakup: application to deuteron- and \({ ^{6}\text{ Li } }\)-induced reactions. Phys. Rev. C 92, 14 (2015)
J. Lei, A.M. Moro, Comprehensive analysis of large \({ \alpha }\) yields observed in \({ ^{6}\text{ Li } }\)-induced reactions. Phys. Rev. C 95, 11 (2017)
J. Lei, A.M. Moro, Unraveling the reaction mechanisms leading to partial fusion of weakly bound nuclei. Phys. Rev. Lett. 123, 6 (2019)
L.A. Souza, E.V. Chimanski, B.V. Carlson, Inclusive breakup cross sections in reactions induced by the nuclides \({ ^{6}\text{ He } }\) and \({ ^{6,7}\text{ Li } }\) in the two-body cluster model. Phys. Rev. C 104, 11 (2021)
L. Yang, C.J. Lin, H. Yamaguchi, J. Lei, P.W. Wen, M. Mazzocco, N.R. Ma, L.J. Sun, D.X. Wang, G.X. Zhang, K. Abe, S.M. Cha, K.Y. Chae, A. Diaz-Torres, J.L. Ferreira, S. Hayakawa, H.M. Jia, D. Kahl, A. Kim, M.S. Kwag, M. La Commara, R. Navarro Pérez, C. Parascandolo, D. Pierroutsakou, J. Rangel, Y. Sakaguchi, C. Signorini, E. Strano, X.X. Xu, F. Yang, Y.Y. Yang, G.L. Zhang, F.P. Zhong, J. Lubian, Insight into the reaction dynamics of proton drip-line nuclear system \({ ^{17}\text{ F } + ^{58}\text{ Ni } }\) at near-barrier energies. Phys. Lett. B 813, 136045 (2021)
J. Rangel, M.R. Cortes, J. Lubian, L.F. Canto, Theory of complete and incomplete fusion of weakly bound systems. Phys. Lett. B 803, 135337 (2020)
M.R. Cortes, J. Rangel, J.L. Ferreira, J. Lubian, L.F. Canto, Complete and incomplete fusion of \({ ^{7}\text{ Li } }\) projectiles on heavy targets. Phys. Rev. C 102, 16 (2020)
J. Lubian, J.L. Ferreira, J. Rangel, M.R. Cortes, L.F. Canto, Fusion processes in collisions of \({ ^{6}\text{ Li } }\) beams on heavy targets. Phys. Rev. C 105, 054601 (2022)
L.C. Chamon, B.V. Carlson, L.R. Gasques, D. Pereira, C. De Conti, M.A.G. Alvarez, M.S. Hussein, M.A. Cândido Ribeiro, E.S. Rossi, C.P. Silva, Toward a global description of the nucleus-nucleus interaction. Phys. Rev. C 66, 014610 (2002)
L.C. Chamon, B.V. Carlson, L.R. Gasques, São Paulo potential version 2 (spp2) and Brazilian nuclear potential (BNP). Comput. Phys. Commun. 267, 108061 (2021)
S. Raman, C.W. Nestor, P. Tikkanen, Transition probability from the ground to the first-excited \(2^+\) state of even-even nuclides. At. Data Nucl. Data Tables 78, 28 (2001)
T. Kibédi, R.H. Spear, Reduced electric-octupole transition probabilities, \({ B(E3;0_1^+ \rightarrow 3_1^-) }\)-an update. At. Data Nucl. Data Tables 80, 2 (2002)
G. Potel, F. Barranco, E. Vigezzi, R.A. Broglia, Evidence for phonon mediated pairing interaction in the halo of the nucleus \({ ^{11}\text{ Li } }\). Phys. Rev. Lett. 105, 172502 (2010)
P. Descouvemont, Halo effects in the \({ ^{11}\text{ Li }(p, t)^{9}\text{ Li } }\) reaction. Phys. Rev. C 104, 9 (2021)
F. Cappuzzello, D. Carbone, M. Cavallaro, M. Bondí, C. Agodi, F. Azaiez, A. Bonaccorso, A. Cunsolo, L. Fortunato, A. Foti, S. Franchoo, E. Khan, R. Linares, J. Lubian, J.A. Scarpaci, A. Vitturi, Signatures of the giant pairing vibration in the \({ ^{14}\text{ C } }\) and \({ ^{15}\text{ C } }\) atomic nuclei. Nat. Commun. 6, 6743 (2015)
F. Barranco, G. Potel, R.A. Broglia, E. Vigezzi, Structure and reactions of \({ ^{11}\text{ Be } }\): many-body basis for single-neutron halo. Phys. Rev. Lett. 119, 082501 (2017)
M. Cavallaro, F. Cappuzzello, D. Carbone, C. Agodi, Giant pairing vibrations in light nuclei. Eur. Phys. J. A 55, 244 (2019)
M. Assié, C.H. Dasso, R.J. Liotta, A.O. Macchiavelli, A. Vitturi, The giant pairing vibration in heavy nuclei—present status and future studies. Eur. Phys. J. A 55(12), 245 (2019). https://doi.org/10.1140/epja/i2019-12829-8
T. Aumann, C. Barbieri, D. Bazin, C.A. Bertulani, A. Bonaccorso, W.H. Dickhoff, A. Gade, M. Gómez-Ramos, B.P. Kay, A.M. Moro, T. Nakamura, A. Obertelli, K. Ogata, S. Paschalis, T. Uesaka, Quenching of single-particle strength from direct reactions with stable and rare-isotope beams. Prog. Part. Nucl. Phys. 118, 103847 (2021)
M. Gómez-Ramos, A.M. Moro, Binding-energy independence of reduced spectroscopic strengths derived from \({ (p,2p) }\) and \({ (p, pn) }\) reactions with nitrogen and oxygen isotopes. Phys. Lett. B 785, 511 (2018)
J. Lee, J.A. Tostevin, B.A. Brown, F. Delaunay, W.G. Lynch, M.J. Saelim, M.B. Tsang, Reduced neutron spectroscopic factors when using potential geometries constrained by Hartree–Fock calculations. Phys. Rev. C 73, 044608 (2006)
M.B. Tsang, J. Lee, S.C. Su, J.Y. Dai, M. Horoi, H. Liu, W.G. Lynch, S. Warren, Survey of excited state neutron spectroscopic factors for \({ Z = 8-28 }\) nuclei. Phys. Rev. Lett. 102, 062501 (2009)
J.A. Tostevin, A. Gade, Updated systematics of intermediate-energy single-nucleon removal cross sections. Phys. Rev. C 103, 7 (2021)
G.J. Kramer, H.P. Blok, L. Lapikás, A consistent analysis of (e, e’p) and (d,3he) experiments. Nucl. Phys. A 679, 86 (2001)
B.P. Kay, T.L. Tang, I.A. Tolstukhin, G.B. Roderick, A.J. Mitchell, Y. Ayyad, S.A. Bennett, J. Chen, K.A. Chipps, H.L. Crawford, S.J. Freeman, K. Garrett, M.D. Gott, M.R. Hall, C.R. Hoffman, H. Jayatissa, A.O. Macchiavelli, P.T. MacGregor, D.K. Sharp, G.L. Wilson, Quenching of single-particle strength in \({ A=15 }\) nuclei. Phys. Rev. Lett. 129, 152501 (2022)
B.A. Brown, B.H. Wildenthal, Status of the nuclear shell model. Ann. Rev. Nucl. Part. Sci. 38, 29–66 (1988)
O. Jensen, G. Hagen, M. Hjorth-Jensen, B.A. Brown, A. Gade, Quenching of spectroscopic factors for proton removal in oxygen isotopes. Phys. Rev. Lett. 107, 4 (2011)
C. Barbieri, Role of long-range correlations in the quenching of spectroscopic factors. Phys. Rev. Lett. 103, 4 (2009)
A. Cipollone, C. Barbieri, P. Navrátil, Chiral three-nucleon forces and the evolution of correlations along the oxygen isotopic chain. Phys. Rev. C 92, 12 (2015)
J. Wylie, J. Okołowicz, W. Nazarewicz, M. Płoszajczak, S.M. Wang, X. Mao, N. Michel, Spectroscopic factors in dripline nuclei. Phys. Rev. C 104, 7 (2021)
T. Duguet, H. Hergert, J.D. Holt, V. Somà, Nonobservable nature of the nuclear shell structure: meaning, illustrations, and consequences. Phys. Rev. C 92, 15 (2015)
A.J. Tropiano, S.K. Bogner, R.J. Furnstahl, Short-range correlation physics at low renormalization group resolution. Phys. Rev. C 104, 16 (2021)
A.J. Tropiano, S.K. Bogner, R.J. Furnstahl, M.A. Hisham, Quasi-deuteron model at low renormalization group resolution. Phys. Rev. C 106, 8 (2022)
M.A. Hisham, R.J. Furnstahl, A.J. Tropiano, Renormalization group evolution of optical potentials: explorations using a “toy’’ model. Phys. Rev. C 106, 13 (2022)
C. Hebborn, P. Capel, Sensitivity of one-neutron knockout to the nuclear structure of halo nuclei. Phys. Rev. C 100, 10 (2019)
C. Hebborn, P. Capel (in preparation) (2022)
A. Gade, P. Adrich, D. Bazin, M.D. Bowen, B.A. Brown, C.M. Campbell, J.M. Cook, T. Glasmacher, P.G. Hansen, K. Hosier, S. McDaniel, D. McGlinchery, A. Obertelli, K. Siwek, L.A. Riley, J.A. Tostevin, D. Weisshaar, Reduction of spectroscopic strength: weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions. Phys. Rev. C 77, 10 (2008)
T. Aumann, C.A. Bertulani, F. Schindler, S. Typel, Peeling off neutron skins from neutron-rich nuclei: constraints on the symmetry energy from neutron-removal cross sections. Phys. Rev. Lett. 119, 5 (2017)
M.C. Atkinson, W.H. Dickhoff, Investigating the link between proton reaction cross sections and the quenching of proton spectroscopic factors in 48Ca. Phys. Lett. B 798, 135027 (2019)
S. Paschalis, M. Petri, A.O. Macchiavelli, O. Hen, E. Piasetzky, Nucleon-nucleon correlations and the single-particle strength in atomic nuclei. Phys. Lett. B 800, 135110 (2020)
F. Flavigny, A. Obertelli, A. Bonaccorso, G.F. Grinyer, C. Louchart, L. Nalpas, A. Signoracci, Nonsudden limits of heavy-ion induced knockout reactions. Phys. Rev. Lett. 108, 5 (2012)
C. Louchart, A. Obertelli, A. Boudard, F. Flavigny, Nucleon removal from unstable nuclei investigated via intranuclear cascade. Phys. Rev. C 83, 5 (2011)
M. Gómez-Ramos, J. Gómez-Camacho, A.M. Moro, Binding-energy asymmetry in absorption explored through CDCC extended for complex potentials. Phys. Lett. B 832, 137252 (2022)
C. Hebborn, G. Potel, Green’s function knockout formalism. Phys. Rev. C 107, 014607 (2023)
G.F. Grinyer, D. Bazin, A. Gade, J.A. Tostevin, P. Adrich, M.D. Bowen, B.A. Brown, C.M. Campbell, J.M. Cook, T. Glasmacher, S. McDaniel, P. Navrátil, A. Obertelli, S. Quaglioni, K. Siwek, J.R. Terry, D. Weisshaar, R.B. Wiringa, Knockout reactions from \({ p }\)-shell nuclei: tests of ab initio structure models. Phys. Rev. Lett. 106, 4 (2011)
A.N. Kuchera, D. Bazin, T. Phan, J.A. Tostevin, M. Babo, T. Baumann, P.C. Bender, M. Bowry, J. Bradt, J. Brown, P.A. DeYoung, B. Elman, J.E. Finck, A. Gade, G.F. Grinyer, M.D. Jones, B. Longfellow, E. Lunderberg, T.H. Redpath, W.F. Rogers, K. Stiefel, M. Thoennessen, D. Votaw, D. Weisshaar, K. Whitmore, R.B. Wiringa, Mirror nucleon removal reactions in \({ p }\)-shell nuclei. Phys. Rev. C 105, 8 (2022)
A.E. Lovell, F.M. Nunes, M. Catacora-Rios, G.B. King, Recent advances in the quantification of uncertainties in reaction theory. J. Phys. G Nucl. Part. Phys. 48, 014001 (2020)
A.A. Ioannides, R.C. Johnson, Propagation of a deuteron in nuclear matter and the spin dependence of the deuteron optical potential. Phys. Rev. C 17, 1331 (1978)
R.C. Johnson, J.A. Tostevin, M.H. Lopes, Antisymmetrization effects in deuteron-nucleus elastic scattering. Nucl. Phys. 1980, 750 (1981)
R.C. Johnson, N. Austern, M.H. Lopes, Antisymmetrized deuteron stripping. Phys. Rev. C 26, 348–356 (1982)
J.A. Tostevin, M.H. Lopes, R.C. Johnson, Antisymmetrization corrections in deuteron elastic scattering and deuteron-induced transfer reactions. Nucl. Phys. A 465, 22 (1987)
M.J. Dinmore, N.K. Timofeyuk, J.S. Al-Khalili, R.C. Johnson, Effects of an induced three-body force in the incident channel of \((d, p)\) reactions. Phys. Rev. C 99, 064612 (2019)
M. Theeten, H. Matsumura, M. Orabi, D. Baye, P. Descouvemont, Y. Fujiwara, Y. Suzuki, Three-body model of light nuclei with microscopic nonlocal interactions. Phys. Rev. C 76, 11 (2007)
M.L. Avila, K.E. Rehm, S. Almaraz-Calderon, A.D. Ayangeakaa, C. Dickerson, C.R. Hoffman, C.L. Jiang, B.P. Kay, J. Lai, O. Nusair, R.C. Pardo, D. Santiago-Gonzalez, R. Talwar, C. Ugalde, Study of \({ (\alpha, p) }\) and \({ (\alpha, n) }\) reactions with a multi-sampling ionization chamber. Nucl. Instrum. Methods. Phys. Res. A 859, 8 (2017)
J.P. Schiffer, C.R. Hoffman, B.P. Kay, J.A. Clark, C.M. Deibel, S.J. Freeman, A.M. Howard, A.J. Mitchell, P.D. Parker, D.K. Sharp, J.S. Thomas, Test of sum rules in nucleon transfer reactions. Phys. Rev. Lett. 108, 5 (2012)
J.P. Schiffer, C.R. Hoffman, B.P. Kay, J.A. Clark, C.M. Deibel, S.J. Freeman, M. Honma, A.M. Howard, A.J. Mitchell, T. Otsuka, P.D. Parker, D.K. Sharp, J.S. Thomas, Valence nucleon populations in the Ni isotopes. Phys. Rev. C 87, 15 (2013)
K. Wimmer, Nucleon transfer reactions with radioactive beams. J. Phys. G Nucl. Part. Phys. 45, 033002 (2018)
P. Capel, F.M. Nunes, Peripherality of breakup reactions. Phys. Rev. C 75, 6 (2007)
D.R. Phillips et al., Get on the BAND wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics. J. Phys. G Nucl. Part. Phys. 48, 072001 (2021)
X. Zhang, K.M. Nollett, D.R. Phillips, Halo effective field theory constrains the solar \({ ^7\text{ Be } + p \rightarrow ^8\text{ B } + \gamma }\) rate. Phys. Lett. B 751, 535 (2015)
C. Iliadis, K. Anderson, A. Coc, F. Timmes, S. Starrfield, Bayesian estimation of thermonuclear reaction rates. Astrophys. J. 831, 107 (2016)
B. Acharya, B.D. Carlsson, A. Ekström, C. Forssén, L. Platter, Uncertainty quantification for proton-proton fusion in chiral effective field theory. Phys. Lett. B 760, 584 (2016)
S. Wesolowski, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Exploring Bayesian parameter estimation for chiral effective field theory using nucleon-nucleon phase shifts. J. Phys. G Nucl. Part. Phys. 46, 045102 (2019)
X. Zhang, K.M. Nollett, D.R. Phillips, \({ S }\)-factor and scattering-parameter extractions from \({ {}^{3}\text{ He } +{}^{4}\text{ He } \rightarrow {}^{7}\text{ Be } + \gamma }\). J. Phys. G Nucl. Part. Phys. 47, 054002 (2020)
P. Premarathna, G. Rupak, Bayesian analysis of capture reactions \({ ^3\text{ He }(\alpha,\gamma )^7\text{ Be } }\) and \({ ^3\text{ H }(\alpha,\gamma )^7\text{ Li } }\). Eur. Phys. J. A 56, 166 (2022)
B. Acharya, S. Bacca, Neutrino-deuteron scattering: uncertainty quantification and new \({ L_{1, A} }\) constraints. Phys. Rev. C 101, 015505 (2020)
J.A. Melendez, R.J. Furnstahl, D.R. Phillips, M.T. Pratola, S. Wesolowski, Quantifying correlated truncation errors in effective field theory. Phys. Rev. C 100, 044001 (2019)
P. Maris et al., Light nuclei with semilocal momentum-space regularized chiral interactions up to third order. Phys. Rev. C 103, 054001 (2021)
R. Higa, P. Premarathna, G. Rupak, Coupled-channel treatment of \({ ^7\text{ Be }(p,\gamma )^8\text{ B } }\) in effective field theory. arXiv:2010.13003 (2020)
C. Drischler, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, How well do we know the neutron-matter equation of state at the densities inside neutron stars? A Bayesian approach with correlated uncertainties. Phys. Rev. Lett. 125, 202702 (2020)
C. Drischler, J.A. Melendez, R.J. Furnstahl, D.R. Phillips, Quantifying uncertainties and correlations in the nuclear-matter equation of state. Phys. Rev. C 102, 054315 (2020)
M. Poudel, D.R. Phillips, Effective field theory analysis of \({ ^{3}\text{ He }-\alpha }\) scattering data. J. Phys. G Nucl. Part. Phys. 49, 045102 (2022)
B. Acharya, S. Bacca, Gaussian process error modeling for chiral effective-field-theory calculations of \(np{\leftrightarrow }d{\gamma }\) at low energies. Phys. Lett. B 827, 137011 (2022)
D. Odell, C.R. Brune, D.R. Phillips, R.J. deBoer, S.N. Paneru, Performing Bayesian analyses with AZURE2 using BRICK: an application to the \(^7\)Be system. Front. Phys. 10, 888476 (2022)
S. Wesolowski, I. Svensson, A. Ekström, C. Forssén, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Rigorous constraints on three-nucleon forces in chiral effective field theory from fast and accurate calculations of few-body observables. Phys. Rev. C 104, 064001 (2021)
B. Acharya, S. Bacca, F. Bonaiti, S.S.L. Muli, J.E. Sobczyk, Uncertainty quantification in electromagnetic observables of nuclei. arXiv:2210.04632 (2022)
A.E. Lovell, F.M. Nunes, Constraining transfer cross sections using Bayes’ theorem. Phys. Rev. C 97, 16 (2018)
G.B. King, A.E. Lovell, F.M. Nunes, Uncertainty quantification due to optical potentials in models for \({ (d, p) }\) reactions. Phys. Rev. C 98, 9 (2018)
M. Catacora-Rios, G.B. King, A.E. Lovell, F.M. Nunes, Exploring experimental conditions to reduce uncertainties in the optical potential. Phys. Rev. C 100, 10 (2019)
M. Catacora-Rios, G.B. King, A.E. Lovell, F.M. Nunes, Statistical tools for a better optical model. Phys. Rev. C 104, 9 (2021)
G.B. King, A.E. Lovell, L. Neufcourt, F.M. Nunes, Direct comparison between Bayesian and frequentist uncertainty quantification for nuclear reactions. Phys. Rev. Lett. 122, 5 (2019)
J.A. Melendez, C. Drischler, R.J. Furnstahl, A.J. Garcia, X. Zhang, Model reduction methods for nuclear emulators. arXiv:2203.05528 (2022)
E. Bonilla, P. Giuliani, K. Godbey, D. Lee, Training and projecting: A reduced basis method emulator for many-body. Phys. Rev. C 106, 054322 (2022)
O. Sürer, F.M. Nunes, M. Plumlee, S.M. Wild, Uncertainty quantification in breakup reactions. Phys. Rev. C 106, 12 (2022)
R.J. Furnstahl, A.J. Garcia, P.J. Millican, X. Zhang, Efficient emulators for scattering using eigenvector continuation. Phys. Lett. B 809, 135719 (2020)
C. Drischler, M. Quinonez, P.G. Giuliani, A.E. Lovell, F.M. Nunes, Toward emulating nuclear reactions using eigenvector continuation. Phys. Lett. B 823, 136777 (2021)
J.A. Melendez, C. Drischler, A.J. Garcia, R.J. Furnstahl, X. Zhang, Fast & accurate emulation of two-body scattering observables without wave functions. Phys. Lett. B 821, 136608 (2021)
D. Bai, Z. Ren, Generalizing the calculable \({ R }\)-matrix theory and eigenvector continuation to the incoming wave boundary condition. Phys. Rev. C 103, 014612 (2021)
X. Zhang, R.J. Furnstahl, Fast emulation of quantum three-body scattering. Phys. Rev. C 105, 064004 (2021)
A.O. Macchiavelli, How to study Efimov states in exotic nuclei? Few Body Syst. 56(11–12), 773–778 (2015)
V. Efimov, Energy levels arising form the resonant two-body forces in a three-body system. Phys. Lett. B 33, 563 (1970)
V.N. Efimov, Weakly-bound states of 3 resonantly-interacting particles. Sov. J. Nucl. Phys. 12, 589 (1971)
L.D. Landau, E.M. Lifshits, Quantum Mechanics: Non-Relativistic Theory, vol. 3 (Butterworth-Heinemann, Oxford, 1991)
S.K. Adhikari, L. Tomio, Efimov effect in the three-nucleon system. Phys. Rev. C 26, 83 (1982)
G. Rupak, A. Vaghani, R. Higa, U. van Kolck, Fate of the neutron-deuteron virtual state as an Efimov level. Phys. Lett. B 791, 414 (2019)
K. Kuhn et al., Experimental study of the nature of the \(1^{-}\) and \(2^{-}\) excited states in \(^{10}\)Be using the \(^{11}\)Be\((p, d)\) reaction in inverse kinematics. Phys. Rev. C 104, 044601 (2021)
Acknowledgements
This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the FRIB Theory Alliance award no. DE-SC0013617. This work is supported by the National Science Foundation under Grant Nos. PHY-1555030, PHY-2111426, PHY-1913728, PHY-2209060, PHY-2044632, PHY-1912350, OAC-2004601 and the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract Nos. DE-AC52-07NA27344, DE-AC05-00OR22725, DE-SC0021422, DE-AC02-06CH1135, DE-FG02-93ER40756, DE-SC0020451, and DE-AC05-06OR23177. GP’s work is supported by the LLNL-LDRD Program under Project No. 21-ERD-006. KSB greatly appreciates the financial support of a research fellowship from the Louisiana Board of Regents; it benefited from computing resources provided by the National Energy Research Scientific Computing Center NERSC (under Contract No. DE-AC02-05CH11231), Frontera computing project at the Texas Advanced Computing Center (under National Science Foundation award OAC-1818253) and LSU (www.hpc.lsu.edu). FB’s work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Project-ID 279384907 - SFB 1245. FB would like to acknowledge Sonia Bacca for useful discussions. TF’s work is partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (2017/05660-0, 2019/07767-1), Conselho Nacional de Desenvolvimento Científico e Tecnológico (308486/2015-3) and the INCT-FNA project No. 464898/2014-5.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bazin, D., Becker, K., Bonaiti, F. et al. Perspectives on Few-Body Cluster Structures in Exotic Nuclei. Few-Body Syst 64, 25 (2023). https://doi.org/10.1007/s00601-023-01794-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00601-023-01794-0