[go: up one dir, main page]

Skip to main content
Log in

Perspectives on Few-Body Cluster Structures in Exotic Nuclei

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

It is a fascinating phenomenon in nuclear physics that states with a pronounced few-body structure can emerge from the complex dynamics of many nucleons. Such halo or cluster states often appear near the boundaries of nuclear stability. As such, they are an important part of the experimental program beginning at the Facility for Rare Isotope Beams (FRIB). A concerted effort of theory and experiment is necessary both to analyze experiments involving effective few-body states, as well as to constrain and refine theories of the nuclear force in light of new data from these experiments. As a contribution to exactly this effort, this paper compiles a collection of “perspectives” that emerged out of the Topical Program “Few-body cluster structures in exotic nuclei and their role in FRIB experiments” that was held at FRIB in August 2022 and brought together theorists and experimentalists working on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The EC method was recently recognized as one of the reduced basis methods (RBM) developed in the field of model order reduction [294, 295].

  2. There is additionally a dependence on the mass ratio between the halo constituents and the core, but its influence is rather weak.

References

  1. FRIB400 The Scientific Case for the 400 MeV/u Energy Upgrade of FRIB. https://frib.msu.edu/_files/pdfs/frib400_final.pdf

  2. Experimental Equipment Needs for the Facility for Rare Isotope Beams (FRIB). https://fribusers.org/documents/2014/FRIB_EQUIPMENT_whitepaper.pdf

  3. National Research Council: Nuclear Physics: Exploring the Heart Of Matter. The National Academies Press, Washington (2013). https://doi.org/10.17226/13438

  4. The 2015 Nuclear Science Advisory Committee: Reaching for the horizon: The 2015 long range plan for nuclear science (2015)

  5. J. Bradt, D. Bazin, F. Abu-Nimeh, T. Ahn, Y. Ayyad, S. Beceiro Novo, L. Carpenter, M. Cortesi, M.P. Kuchera, W.G. Lynch, W. Mittig, S. Rost, N. Watwood, J. Yurkon, Commissioning of the active-target time projection chamber. Nucl. Instrum. Methods. Phys. Res. A 875, 9 (2017)

  6. H. Hergert, A guided tour of ab initio nuclear many-body theory. Front. Phys. 8, 379 (2020)

    Google Scholar 

  7. H.-W. Hammer, S. König, U. van Kolck, Nuclear effective field theory: status and perspectives. Rev. Mod. Phys. 92, 66 (2020)

    MathSciNet  Google Scholar 

  8. P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo, A. Calci, Unified ab initio approaches to nuclear structure and reactions. Phys. Scr. 91, 053002 (2016)

    ADS  Google Scholar 

  9. S. Quaglioni, P. Navrátil, Ab initio many-body calculations of \({ n - {}^{3}\text{ H }, n - {}^{4}\text{ He }, p - {}^{3,4}\text{ He } }\), and \({ n - {}^{10}\text{ Be } }\) scattering. Phys. Rev. Lett. 101, 092501 (2008)

    ADS  Google Scholar 

  10. S. Quaglioni, P. Navrátil, Ab initio many-body calculations of nucleon-nucleus scattering. Phys. Rev. C 79, 044606 (2009)

    ADS  Google Scholar 

  11. D. Lee, Lattice simulations for few- and many-body systems. Prog. Part. Nucl. Phys. 63, 117 (2009)

    ADS  Google Scholar 

  12. K.M. Nollett, Ab initio calculations of nuclear widths via an integral relation. Phys. Rev. C 86, 044330 (2012)

    ADS  Google Scholar 

  13. A.R. Flores, K.M. Nollett, Variational Monte Carlo calculations of \({ n + {}^{3}\text{ H } }\) scattering (2022)

  14. S.R. Stroberg, J.D. Holt, A. Schwenk, J. Simonis, Ab initio limits of atomic nuclei. Phys. Rev. Lett. 126, 022501 (2021)

    ADS  Google Scholar 

  15. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427 (2005)

    ADS  Google Scholar 

  16. I. Rotter, A continuum shell model for the open quantum mechanical nuclear system. Rep. Prog. Phys. 54, 635 (1991)

    ADS  Google Scholar 

  17. N. Michel, W. Nazarewicz, M. Płoszajczak, T. Vertse, Shell model in the complex energy plane. J. Phys. G Nucl. Part. Phys. 36, 013101 (2009)

    ADS  Google Scholar 

  18. A. Volya, V. Zelevinsky, Discrete and continuum spectra in the unified shell model approach. Phys. Rev. Lett. 94, 052501 (2005)

    ADS  Google Scholar 

  19. S. Baroni, P. Navrátil, S. Quaglioni, Unified ab initio approach to bound and unbound states: no-core shell model with continuum and its application to \({ {}^{7}\text{ He } }\). Phys. Rev. C 87, 034326 (2013)

    ADS  Google Scholar 

  20. M. Matsuo, T. Nakatsukasa, Open problems in nuclear structure near drip lines. J. Phys. G Nucl. Part. Phys. 37, 064017 (2010)

    ADS  Google Scholar 

  21. N. Michel, W. Nazarewicz, J. Okołowicz, M. Płoszajczak, Open problems in the theory of nuclear open quantum systems. J. Phys. G Nucl. Part. Phys. 37, 064042 (2010)

    ADS  Google Scholar 

  22. J. Okołowicz, M. Płoszajczak, I. Rotter, Dynamics of quantum systems embedded in a continuum. Phys. Rep. 374, 271 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  23. T. Otsuka, A. Gade, O. Sorlin, T. Suzuki, Y. Utsuno, Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020)

    ADS  Google Scholar 

  24. K. Fossez, W. Nazarewicz, Y. Jaganathen, N. Michel, M. Płoszajczak, Nuclear rotation in the continuum. Phys. Rev. C 93, 011305 (2016)

    ADS  Google Scholar 

  25. K. Fossez, J. Rotureau, N. Michel, Q. Liu, W. Nazarewicz, Single-particle and collective motion in unbound deformed \({ {}^{39}\text{ Mg } }\). Phys. Rev. C 94, 054302 (2016)

    ADS  Google Scholar 

  26. K. Fossez, J. Rotureau, W. Nazarewicz, Energy spectrum of neutron-rich helium isotopes: complex made simple. Phys. Rev. C 98, 061302 (2018)

    ADS  Google Scholar 

  27. K. Kravvaris, A. Volya, Study of nuclear clustering from an ab initio perspective. Phys. Rev. Lett. 119, 062501 (2017)

    ADS  Google Scholar 

  28. S.M. Wang, W. Nazarewicz, Puzzling two-proton decay of \({ {}^{67}\text{ Kr } }\). Phys. Rev. Lett. 120, 212502 (2018)

    ADS  Google Scholar 

  29. K. Fossez, J. Rotureau, Density matrix renormalization group description of the island of inversion isotopes \({ {}^{28-33}\text{ F } }\). Phys. Rev. C 106, 034312 (2022)

    ADS  Google Scholar 

  30. A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Structure and reactions of quantum halos. Rev. Mod. Phys. 76, 215 (2004)

    ADS  Google Scholar 

  31. T. Frederico, A. Delfino, L. Tomio, M.T. Yamashita, Universal aspects of light halo nuclei. Prog. Part. Nucl. Phys. 67, 939 (2012)

    ADS  Google Scholar 

  32. I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215 (2013)

    ADS  Google Scholar 

  33. M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, U. Meißner, Microscopic clustering in light nuclei. Rev. Mod. Phys. 90, 035004 (2018)

    ADS  MathSciNet  Google Scholar 

  34. K. Ikeda, N. Takigawa, H. Horiuchi, The systematic structure-change into the molecule-like structures in the self-conjugate \({ 4n }\) nuclei. Prog. Theor. Phys. Suppl. E68, 464 (1968)

    ADS  Google Scholar 

  35. W. von Oertzen, M. Freer, Y. Kanada-En’yo, Nuclear clusters and nuclear molecules. Phys. Rep. 432, 43 (2006)

    ADS  Google Scholar 

  36. M. Freer, The clustered nucleus-cluster structures in stable and unstable nuclei. Rep. Prog. Phys. 70, 2149 (2007)

    ADS  Google Scholar 

  37. J. Okołowicz, W. Nazarewicz, M. Płoszajczak, Toward understanding the microscopic origin of nuclear clustering. Fortschr. Phys. 61, 66 (2013)

    MathSciNet  MATH  Google Scholar 

  38. J. Okołowicz, M. Płoszajczak, W. Nazarewicz, On the origin of nuclear clustering. Prog. Theor. Phys. Suppl. 196, 230 (2012)

    ADS  MATH  Google Scholar 

  39. D. Guillemaud-Mueller, J.C. Jacmart, E. Kashy, A. Latimier, A.C. Mueller, F. Pougheon, A. Richard, Y.E. Penionzhkevich, A.G. Artuhk, A.V. Belozyorov, S.M. Lukyanov, R. Anne, P. Bricault, C. Détraz, M. Lewitowicz, Y. Zhang, Y.S. Lyutostansky, M.V. Zverev, D. Bazin, W.D. Schmidt-Ott, Particle stability of the isotopes \({ {}^{26}\text{ O } }\) and \({ {}^{32}\text{ Ne } }\) in the reaction 44 MeV/nucleon \({ {}^{48}\text{ Ca } + \text{ Ta } }\). Phys. Rev. C 41, 937 (1990)

    ADS  Google Scholar 

  40. B. Blank, M. Płoszajczak, Two-proton radioactivity. Rep. Prog. Phys. 71, 046301 (2008)

    ADS  Google Scholar 

  41. M. Pfützner, M. Karny, L.V. Grigorenko, K. Riisager, Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567 (2012)

    ADS  Google Scholar 

  42. A. Spyrou, Z. Kohley, T. Baumann, D. Bazin, B.A. Brown, G. Christian, P.A. DeYoung, J.E. Finck, N. Frank, E. Lunderberg, S. Mosby, W.A. Peters, S. Schiller, J.K. Smith, J. Snyder, M.J. Strongman, M. Thoennessen, A. Volya, First observation of ground state dineutron decay: \({ {}^{16}\text{ Be } }\). Phys. Rev. Lett. 108, 102501 (2012)

    ADS  Google Scholar 

  43. M. Thoennessen, Z. Kohley, A. Spyrou, E. Lunderberg, P.A. DeYoung, H. Attanayake, T. Baumann, D. Bazin, B.A. Brown, G. Christian, D. Divaratne, S.M. Grimes, A. Haagsma, J.E. Finck, N. Frank, B. Luther, S. Mosby, T. Nagi, G.F. Peaslee, W.A. Peters, A. Schiller, J.K. Smith, J. Snyder, M. Strongman, A. Volya, Observation of ground-state two-neutron decay. Acta Phys. Pol. 44, 543 (2013)

    ADS  Google Scholar 

  44. C.W. Johnson, K.D. Launey, N. Auerbach, S. Bacca, B.R. Barrett, C. Brune, M.A. Caprio, P. Descouvemont, W.H. Dickhoff, C. Elster, P.J. Fasano, K. Fossez, H. Hergert, M. Hjorth-Jensen, L. Hlophe, B. Hu, R.M. Id Betan, A. Idini, S. König, K. Kravvaris, D. Lee, J. Lei, P. Maris, A. Mercenne, K. Minomo, R. Navarro Pérez, W. Nazarewicz, F.M. Nunes, M. Płoszajczak, S. Quaglioni, J. Rotureau, G. Rupak, A.M. Shirokov, I. Thompson, J.P. Vary, A. Volya, F. Xu, V. Zelevinsky, X. Zhang, White paper: From bound states to the continuum. J. Phys. G Nucl. Part. Phys. 47, 123001 (2020)

    ADS  Google Scholar 

  45. A. Volya, V. Zelevinsky, Continuum shell model. Phys. Rev. C 74, 064314 (2006)

    ADS  Google Scholar 

  46. J. Rotureau, N. Michel, W. Nazarewicz, M. Płoszajczak, J. Dukelsky, Density matrix renormalisation group approach for many-body open quantum systems. Phys. Rev. Lett. 97, 110603 (2006)

    ADS  Google Scholar 

  47. G. Hagen, D.J. Dean, M. Hjorth-Jensen, T. Papenbrock, Complex coupled-cluster approach to an ab initio description of open quantum systems. Phys. Lett. B 656, 169 (2007)

    ADS  Google Scholar 

  48. J. Carbonell, A. Deltuva, A.C. Fonseca, R. Lazauskas, Bound state techniques to solve the multiparticle scattering problem. Prog. Part. Nucl. Phys. 74, 55 (2014)

    ADS  Google Scholar 

  49. Y. Jaganathen, N. Michel, M. Płoszajczak, Gamow shell model description of proton scattering on \({ {}^{18}\text{ Ne } }\). Phys. Rev. C 89, 034624 (2014)

    ADS  Google Scholar 

  50. K. Fossez, N. Michel, M. Płoszajczak, Y. Jaganathen, R.M. Id Betan, Description of the proton and neutron radiative capture reactions in the gamow shell model. Phys. Rev. C 91, 034609 (2015)

    ADS  Google Scholar 

  51. A. Ono, H. Horiuchi, T. Maruyama, A. Ohnishi, Fragment formation studied with antisymmetrized version of molecular dynamics with two-nucleon collisions. Phys. Rev. Lett. 68, 2898 (1992)

    ADS  Google Scholar 

  52. Y. Kanada-En’yo, H. Horiuchi, Structure of light unstable nuclei studied with antisymmetrized molecular dynamics. Prog. Theor. Phys. Suppl. 142, 205 (2001)

    ADS  Google Scholar 

  53. H. Feldmeier, J. Schnack, Molecular dynamics for fermions. Rev. Mod. Phys. 72, 655 (2000)

    ADS  Google Scholar 

  54. K.D. Launey, T. Dytrych, J.P. Draayer, Symmetry-guided large-scale shell-model theory. Prog. Part. Nucl. Phys. 89, 101 (2016)

    ADS  Google Scholar 

  55. H. Feshbach, Unified theory of nuclear reactions. Ann. Phys. 5, 390 (1958)

    MathSciNet  MATH  Google Scholar 

  56. I.J. Thompson, F.M. Nunes, Nuclear Reactions for Astrophysics: Principles Calculation and Applications of Low-energy Reactions (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  57. D. Baye, P. Capel, Breakup reaction models for two- and three-cluster projectiles, in Clusters in Nuclei, vol. 2, vol. 848, ed. by C. Beck (Springer, Berlin, 2012). https://doi.org/10.1007/978-3-642-24707-1_3

    Chapter  Google Scholar 

  58. L. Hlophe, K. Kravvaris, S. Quaglioni, Quantifying uncertainties due to irreducible three-body forces in deuteron-nucleus reactions. arXiv:2208.10568 (2022)

  59. M. Theeten, D. Baye, P. Descouvemont, Comparison of local, semi-microscopic, and microscopic three-cluster models. Phys. Rev. C 74, 14 (2006)

    Google Scholar 

  60. M.J. Dinmore, N.K. Timofeyuk, J.S. Al-Khalili, Three-body optical potentials in \({ (d, p) }\) reactions and their influence on indirect study of stellar nucleosynthesis. Phys. Rev. C 104, 12 (2021)

    Google Scholar 

  61. R.C. Johnson, Three-body model of the \({ d+A }\) system in an antisymmetrized, translationally invariant many nucleon theory. Phys. Rev. C 104, 18 (2021)

    Google Scholar 

  62. N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, M. Yahiro, Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions. Phys. Rep. 154, 04 (1987)

    Google Scholar 

  63. M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimura, M. Kawai, Chapter III. Effects of deuteron virtual breakup on deuteron elastic and inelastic scattering. Prog. Theor. Phys. Supp. 89, 32–8 (1986)

    ADS  Google Scholar 

  64. M. Kawai, Chapter II. Formalism of the method of coupled discretized continuum channel. Prog. Theor. Phys. Supp. 89, 11 (1986)

    ADS  Google Scholar 

  65. K. Ogata, M. Yahiro, Y. Iseri, T. Matsumoto, M. Kamimura, New coupled-channel approach to nuclear and Coulomb breakup reactions. Phys. Rev. C 68, 7 (2003)

    Google Scholar 

  66. R.J. Glauber, High energy collision theory, in Lecture in Theoretical Physics, vol. 1, ed. by W.E. Brittin, L.G. Dunham (Interscience, New York, 1959), p.315

    Google Scholar 

  67. P.G. Hansen, J.A. Tostevin, Direct reactions with exotic nuclei. Annu. Rev. Nucl. Part. Sci. 53, 61 (2003)

    Google Scholar 

  68. D. Baye, P. Capel, G. Goldstein, Collisions of halo nuclei within a dynamical Eikonal approximation. Phys. Rev. Lett. 95, 4 (2005)

    Google Scholar 

  69. R.C. Johnson, P.C. Tandy, An approximate three-body theory of deuteron stripping. Nucl. Phys. A 235, 4 (1974)

    Google Scholar 

  70. N.K. Timofeyuk, R.C. Johnson, Theory of deuteron stripping and pick-up reactions for nuclear structure studies. Prog. Part. Nucl. Phys. 111, 103738 (2020)

    Google Scholar 

  71. P. Descouvemont, Low-energy \({ ^{11}\text{ Li }+p }\) and \({ ^{11}\text{ Li }+d }\) scattering in a multicluster model. Phys. Rev. C 101, 11 (2020)

    Google Scholar 

  72. P. Capel, D. Baye, Y. Suzuki, Coulomb-corrected eikonal description of the breakup of halo nuclei. Phys. Rev. C 78, 10 (2008)

    Google Scholar 

  73. G. Potel, A. Idini, F. Barranco, E. Vigezzi, R.A. Broglia, Cooper pair transfer in nucl. Rep. Prog. Phys. 76, 106301 (2013)

    ADS  Google Scholar 

  74. A.M. Moro, J.A. Lay, Interplay between valence and core excitation mechanisms in the breakup of halo nuclei. Phys. Rev. Lett. 109, 5 (2012)

    Google Scholar 

  75. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. 713, 231 (2003)

    Google Scholar 

  76. F.D. Becchetti, G.W. Greenlees, Nucleon-nucleus optical-model parameters, \({ A>40 }\), \({ E<50 }\) MeV. Phys. Rev. 182, 1190 (1969)

    ADS  Google Scholar 

  77. C.A. Bertulani, H.-W. Hammer, U. van Kolck, Effective field theory for halo nuclei: shallow \({ p }\)-wave states. Nucl. Phys. A 712, 37 (2002)

    ADS  Google Scholar 

  78. E. Ryberg, C. Forssén, H.-W. Hammer, L. Platter, Effective field theory for proton halo nuclei. Phys. Rev. C 89, 014325 (2014)

    ADS  MATH  Google Scholar 

  79. C. Ji, C. Elster, D.R. Phillips, \({ {}^{6}\text{ He } }\) nucleus in halo effective field theory. Phys. Rev. C 90, 044004 (2014)

    ADS  Google Scholar 

  80. H.-W. Hammer, C. Ji, D.R. Phillips, Effective field theory description of halo nuclei. J. Phys. G Nucl. Part. Phys. 44, 103002 (2017)

    ADS  Google Scholar 

  81. P. Capel, D.R. Phillips, H.-W. Hammer, Dissecting reaction calculations using halo effective field theory and ab initio input. Phys. Rev. C 98, 034610 (2018)

    ADS  Google Scholar 

  82. T. Papenbrock, Effective theory for deformed nuclei. Nucl. Phys. A 852, 36 (2011)

    ADS  Google Scholar 

  83. T. Papenbrock, H.A. Weidenmüller, Effective field theory for finite systems with spontaneously broken symmetry. Phys. Rev. C 89, 014334 (2014)

    ADS  Google Scholar 

  84. T. Papenbrock, H.A. Weidenmüller, Effective field theory of emergent symmetry breaking in deformed atomic nuclei. J. Phys. G Nucl. Part. Phys. 42, 106103 (2015)

    Google Scholar 

  85. C. Hebborn, F.M. Nunes, G. Potel, W.H. Dickhoff, J.W. Holt, M.C. Atkinson, R.B. Baker, C. Barbieri, G. Blanchon, M. Burrows, R. Capote, P. Danielewicz, M. Dupuis, C. Elster, J.E. Escher, L. Hlophe, A. Idini, H. Jayatissa, B.P. Kay, K. 1200 Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G. Perdikakis, C.D. Pruitt, G.H. Sargsyan, I.J. Thompson,M. Vorabbi, T.R. Whitehead, Optical potentials for the rare-isotope beam era. J. Phys G, in press (2023)

  86. A. Volya, V. Zelevinsky, Exploring quantum dynamics in an open many-body system: transition to superradiance. J. Opt. B Quantum Semiclass. Opt. 5, 450 (2003)

    ADS  Google Scholar 

  87. E. Garrido, A.S. Jensen, D.V. Fedorov, Rotational bands in the continuum illustrated by \({ {}^{8}\text{ Be } }\) results. Phys. Rev. C 88, 024001 (2013)

    ADS  Google Scholar 

  88. T. Dytrych, K.D. Launey, J.P. Draayer, D.J. Rowe, J.L. Wood, G. Rosensteel, C. Bahri, D. Langr, R.B. Baker, Physics of nuclei: key role of an emergent symmetry. Phys. Rev. Lett. 124, 6 (2020)

    Google Scholar 

  89. B.R. Mottelson, Nobel lectures. Physics 1971–1980 (1992)

  90. J.P. Elliott, Collective motion in the nuclear shell model. I. Classification schemes for states of mixed configurations. Proc. R. Soc. A 245, 128 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  91. K. Heyde, J.L. Wood, Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467 (2011)

    ADS  Google Scholar 

  92. J.L. Wood, 1. Nuclear Collectivity—Its Emergent Nature Viewed from Phenomenology and Spectroscopy, p. 3

  93. D.J. Rowe, J.L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010)

    MATH  Google Scholar 

  94. A.E. Stuchbery, J.L. Wood, To shell model, or not to shell model, that is the question. Physics 4, 773 (2022)

    Google Scholar 

  95. S. Weinberg, Nuclear forces from chiral Lagrangians. Phys. Lett. B 251, 92 (1990)

    Google Scholar 

  96. C. Ordóñez, U. van Kolck, Chiral Lagrangians and nuclear forces. Phys. Lett. B 291, 64 (1992)

    Google Scholar 

  97. T. Papenbrock, H.A. Weidenmüller, Effective field theory for deformed atomic nuclei. Phys. Scr. 91, 053004 (2016)

    ADS  Google Scholar 

  98. Yu-Xuan Luo, K. Fossez, Quan Liu, Jian-You. Guo, Role of quadrupole deformation and continuum effects in the “island of inversion” nuclei \({ {}^{28,29,31}\text{ F } }\). Phys. Rev. C 104, 014307 (2021)

  99. J.M. Eisenberg, W. Greiner, Nuclear Theory. Excitation Mechanisms of the Nucleus (Netherlands, 1976)

  100. S.R. Stroberg, A. Calci, H. Hergert, J.D. Holt, S.K. Bogner, R. Roth, A. Schwenk, Nucleus-dependent valence-space approach to nuclear structure. Phys. Rev. Lett. 118, 6 (2017)

    Google Scholar 

  101. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Coupled-cluster computations of atomic nuclei. Rep. Progress Phys. 77, 096302 (2014)

    ADS  Google Scholar 

  102. S.R. Stroberg, J. Henderson, G. Hackman, P. Ruotsalainen, G. Hagen, J.D. Holt, Systematics of \({ E2 }\) strength in the \({ sd }\) shell with the valence-space in-medium similarity renormalization group. Phys. Rev. C 105, 10 (2022)

    Google Scholar 

  103. E. Ramos-Cordoba, P. Salvador, E. Matito, Separation of dynamic and nondynamic correlation. Phys. Chem. Chem. Phys. 18, 4023 (2016)

    Google Scholar 

  104. J.M. Yao, J. Engel, L.J. Wang, C.F. Jiao, H. Hergert, Generator-coordinate reference states for spectra and \({ 0\nu \beta \beta }\) decay in the in-medium similarity renormalization group. Phys. Rev. C 98, 11 (2018)

    Google Scholar 

  105. G. Hagen, S.J. Novario, Z.H. Sun, T. Papenbrock, G.R. Jansen, J.G. Lietz, T. Duguet, A. Tichai, Angular-momentum projection in coupled-cluster theory: structure of \({ ^{34}\text{ Mg } }\). Phys. Rev. C 105, 23 (2022)

    Google Scholar 

  106. K.D. Launey, A. Mercenne, T. Dytrych, Nuclear dynamics and reactions in the ab initio symmetry-adapted framework. Annu. Rev. Nucl. Part. Sci. 71, 253 (2021)

    ADS  MATH  Google Scholar 

  107. P. Ruotsalainen, J. Henderson, G. Hackman, G.H. Sargsyan, K.D. Launey, A. Saxena, P.C. Srivastava, S.R. Stroberg, T. Grahn, J. Pakarinen, G.C. Ball, R. Julin, P.T. Greenlees, J. Smallcombe, C. Andreoiu, N. Bernier, M. Bowry, M. Buckner, R. Caballero-Folch, A. Chester, S. Cruz, L.J. Evitts, R. Frederick, A.B. Garnsworthy, M. Holl, A. Kurkjian, D. Kisliuk, K.G. Leach, E. McGee, J. Measures, D. Mücher, J. Park, F. Sarazin, J.K. Smith, D. Southall, K. Starosta, C.E. Svensson, K. Whitmore, M. Williams, C.Y. Wu, Isospin symmetry in \({ B(E2) }\) values: Coulomb excitation study of \({ ^{21}\text{ Mg } }\). Phys. Rev. C 99, 7 (2019)

    Google Scholar 

  108. G.H. Sargsyan, K.D. Launey, M.T. Burkey, A.T. Gallant, N.D. Scielzo, G. Savard, A. Mercenne, T. Dytrych, D. Langr, L. Varriano, B. Longfellow, T.Y. Hirsh, J.P. Draayer, Impact of clustering on the \({ ^{8}\text{ Li } }\)\({ \beta }\) decay and recoil form factors. Phys. Rev. Lett. 128, 7 (2022)

    Google Scholar 

  109. A.C. Dreyfuss, K.D. Launey, J.E. Escher, G.H. Sargsyan, R.B. Baker, T. Dytrych, J.P. Draayer, Clustering and \({ \alpha }\)-capture reaction rate from ab initio symmetry-adapted descriptions of \({ ^{20}\text{ Ne } }\). Phys. Rev. C 102, 14 (2020)

    Google Scholar 

  110. J.P. Draayer, Y. Leschber, S.C. Park, R. Lopez, Representations of U(3) in U(\({ N }\)). Comput. Phys. Commun. 56, 279 (1989)

    ADS  MATH  Google Scholar 

  111. J.R. Draayer, K.J. Weeks, Shell-model description of the low-energy structure of strongly deformed nuclei. Phys. Rev. Lett. 51, 1422 (198)

  112. G. Rosensteel, D.J. Rowe, Nuclear Sp(3, r) model. Phys. Rev. Lett. 38, 10 (1977)

    ADS  Google Scholar 

  113. D.J. Rowe, The emergence and use of symmetry in the many-nucleon model of atomic nuclei. in Emergent Phenomena in Atomic Nuclei from Large-scale Modeling: a Symmetry-guided Perspective (World Scientific Publishing Co., 2017), p. 65

  114. E.D. Johnson, G.V. Rogachev, V.Z. Goldberg, S. Brown, D. Robson, A.M. Crisp, P.D. Cottle, C. Fu, J. Giles, B.W. Green, K.W. Kemper, K. Lee, B.T. Roeder, R.E. Tribble, Extreme \({ \alpha }\)-clustering in the \({ {}^{18}\text{ O } }\) nucleus. Eur. Phys. J. A 42, 135 (2009)

    ADS  Google Scholar 

  115. S. Kubono, Nuclear clustering aspects in astrophysics, in Atomic and Nuclear Clusters. ed. by G.S. Anagnostatos, W. von Oertzen (Springer, Berlin, 1995), p.73

    Google Scholar 

  116. P. Descouvemont, Cluster models in nuclear astrophysics. J. Phys. G Nucl. Part. Phys. 35, 014006 (2007)

    ADS  Google Scholar 

  117. Y.P. Shen, B. Guo, W.P. Liu, Alpha-cluster transfer reactions: a tool for understanding stellar helium burning. Prog. Part. Nucl. Phys. 119, 103857 (2021)

    Google Scholar 

  118. P.M. Endt, Spectroscopic factors for single-nucleon transfer in the \({ A = 21-44 }\) region. Atom. Data Nucl. Data Tab. 19, 23 (1977)

    ADS  Google Scholar 

  119. R.B. Wiringa, S. Pastore, S.C. Pieper, G.A. Miller, Charge-symmetry breaking forces and isospin mixing in \({ {}^{8}\text{ Be } }\). Phys. Rev. C 88, 044333 (2013)

    ADS  Google Scholar 

  120. Y. Kanada-En’yo, M. Kimura, A. Ono, Antisymmetrized molecular dynamics and its applications to cluster phenomena. Prog. Theor. Exp. Phys. 2012, 01–202 (2012)

    MATH  Google Scholar 

  121. S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T.A. Lähde, T. Luu, U. Meißner, Ab initio alpha-alpha scattering. Nature 528, 111 (2015)

    ADS  Google Scholar 

  122. S. Elhatisari, N. Li, A. Rokash, J.M. Alarcón, D. Du, N. Klein, Bing-nan Lu, U. Meißner, E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, G. Rupak, Nuclear binding near a quantum phase transition. Phys. Rev. Lett. 117, 132501 (2016)

    ADS  Google Scholar 

  123. K. Kravvaris, A. Volya, Quest for superradiance in atomic nuclei. AIP Conf. Proc. 1912, 020010 (2017)

    Google Scholar 

  124. S. Elhatisari, E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, N. Li, B. Lu, U. Meißner, G. Rupak, Ab initio calculations of the isotopic dependence of nuclear clustering. Phys. Rev. Lett. 119, 6 (2017)

    Google Scholar 

  125. J.-P. Ebran, E. Khan, T. Nikšić, D. Vretenar, How atomic nuclei cluster. Nature 487, 344 (2012)

    ADS  Google Scholar 

  126. M. von Tresckow, M. Rudigier, T.M. Shneidman, T. Kröll, M. Boromiza, C. Clisu, C. Costache, D. Filipescu, N.M. Florea, I. Gheorghe, K. Gladnishki, A. Ionescu, D. Kocheva, R. Lică, N. Mărginean, R. Mărginean, K.R. Mashtakov, C. Mihai, R.E. Mihai, A. Negret, C.R. Nita, A. Olacel, A. Oprea, S. Pascu, G. Rainovski, T. Sava, M. Scheck, P. Spagnoletti, C. Sotty, L. Stan, I. Stiru, S. Toma, A. Turturică, S. Ujeniuc, New evidence for alpha clustering structure in the ground state band of \(^{212}\)Po. Phys. Lett. B 821, 136624 (2021)

    Google Scholar 

  127. Y. Alhassid, M. Gai, G.F. Bertsch, Radiative width of molecular-cluster states. Phys. Rev. Lett. 49, 0 (1982)

    Google Scholar 

  128. K. Hencken, G. Baur, D. Trautmann, A cluster version of the GGT sum rule. Nucl. Phys. A 733, 10 (2004)

    Google Scholar 

  129. M.A. Caprio, P.J. Fasano, P. Maris, Robust ab initio prediction of nuclear electric quadrupole observables by scaling to the charge radius. Phys. Rev. C 105, 7 (2022)

    Google Scholar 

  130. P. Capel, R.C. Johnson, F.M. Nunes, One-neutron halo structure by the ratio method. Phys. Lett. B 705, 15 (2011)

    Google Scholar 

  131. F. Bonaiti, S. Bacca, G. Hagen, Ab initio coupled-cluster calculations of ground and dipole excited states in \({ ^{8}\text{ He } }\). Phys. Rev. C 105, 9 (2022)

    Google Scholar 

  132. S. Bacca, N. Barnea, G. Hagen, G. Orlandini, T. Papenbrock, First principles description of the giant dipole resonance in \({ ^{16}\text{ O } }\). Phys. Rev. Lett. 111, 5 (2013)

    Google Scholar 

  133. S. Bacca, N. Barnea, G. Hagen, M. Miorelli, G. Orlandini, T. Papenbrock, Giant and pigmy dipole resonances in \({ ^{4}\text{ He } }\), \({ ^{16,22}\text{ O } }\), and \({ ^{40}\text{ Ca } }\) from chiral nucleon-nucleon interactions. Phys. Rev. C 90, 12 (2014)

    Google Scholar 

  134. D.L. Canham, H.-W. Hammer, Universal properties and structure of halo nuclei. Eur. Phys. J. A 37, 367 (2008)

    ADS  Google Scholar 

  135. M. Fukuda, T. Ichihara, N. Inabe, T. Kubo, H. Kumagai, T. Nakagawa, Y. Yano, I. Tanihata, M. Adachi, K. Asahi, M. Kouguchi, M. Ishihara, H. Sagawa, S. Shimoura, Neutron halo in \({ {}^{11}\text{ Be } }\) studied via reaction cross section. Phys. Lett. B 268, 339 (1991)

    ADS  Google Scholar 

  136. T. Misu, W. Nazarewicz, S. Åberg, Deformed nuclear halos. Nucl. Phys. A 614, 44 (1997)

    ADS  Google Scholar 

  137. D. Suzuki, H. Iwasaki, H.J. Ong, N. Imai, H. Sakurai, T. Nakao, N. Aoi, H. Baba, S. Bishop, Y. Ichikawa, M. Ishihara, Y. Kondo, T. Kubo, K. Kurita, T. Motobayashi, T. Nakamura, T. Okumura, T.K. Onishi, S. Ota, M.K. Suzuki, S. Takeuchi, Y. Togano, Y. Yanagisawa, Lifetime measurements of excited states in \({ {}^{17}\text{ C } }\): possible interplay between collectivity and halo effects. Phys. Lett. B 666, 222 (2008)

    ADS  Google Scholar 

  138. T. Nakamura, N. Kobayashi, Y. Kondo, Y. Satou, N. Aoi, H. Baba, S. Deguchi, N. Fukuda, J. Gibelin, N. Inabe, M. Ishihara, D. Kameda, Y. Kawada, T. Kubo, K. Kusaka, A. Mengoni, T. Motobayashi, T. Ohnishi, M. Ohtake, N.A. Orr, H. Otsu, T. Otsuka, A. Saito, H. Sakurai, S. Shimoura, T. Sumikama, H. Takeda, E. Takeshita, M. Takechi, S. Takeuchi, K. Tanaka, K.N. Tanaka, N. Tanaka, Y. Togano, Y. Utsuno, K. Yoneda, A. Yoshida, K. Yoshida, Halo structure of the island of inversion nucleus \({ {}^{31}\text{ Ne } }\). Phys. Rev. Lett. 103, 262501 (2009)

    ADS  Google Scholar 

  139. M. Takechi, T. Ohtsubo, M. Fukuda, D. Nishimura, T. Kuboki, T. Suzuki, T. Yamaguchi, A. Ozawa, T. Moriguchi, H. Ooishi, D. Nagae, H. Suzuki, S. Suzuki, T. Izumikawa, T. Sumikama, M. Ishihara, H. Geissel, N. Aoi, R. Chen, D. Fang, N. Fukuda, I. Hachiuma, N. Inabe, Y. Ishibashi, Y. Ito, D. Kameda, T. Kubo, K. Kusaka, M. Lantz, Y. Ma, K. Matsuta, M. Mihara, Y. Miyashita, S. Momota, K. Namihira, M. Nagashima, Y. Ohkuma, T. Ohnishi, M. Ohtake, K. Ogawa, H. Sakurai, Y. Shimbara, T. Suda, H. Takeda, S. Takeuchi, K. Tanaka, R. Watanabe, M. Winkler, Y. Yanagisawa, Y. Yasuda, K. Yoshinaga, A. Yoshida, K. Yoshida, Interaction cross sections for \({ \text{ Ne } }\) isotopes towards the island of inversion and halo structures of \({ {}^{29}\text{ Ne } }\) and \({ {}^{31}\text{ Ne } }\). Phys. Lett. B 707, 357 (2012)

    ADS  Google Scholar 

  140. K.S., Becker, K.D. Launey, A. Ekström, T. Dytrych, Ab Initio symmetry-adapted EVC emulator for studying emergent collectivity and clustering in nuclei. Front. Phys. 11 (2023)

  141. K.S. Becker, et al. (in preparation) (2022)

  142. C. Hebborn, G. Hupin, K. Kravvaris, S. Quaglioni, P. Navrátil, P. Gysbers, Ab initio prediction of the \({ ^{4}\text{ He }(d,\gamma )^{6}\text{ Li } }\) big bang radiative capture. Phys. Rev. Lett. 129, 5 (2022)

    Google Scholar 

  143. A. Gnech, M. Viviani, L.E. Marcucci, Calculation of the \({ ^{6}\text{ Li } }\) ground state within the hyperspherical harmonic basis. Phys. Rev. C 102, 19 (2020)

    Google Scholar 

  144. D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, E. Rrapaj, Eigenvector continuation with subspace learning. Phys. Rev. Lett. 121, 032501 (2018)

    ADS  Google Scholar 

  145. S. König, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, Eigenvector continuation as an efficient and accurate emulator for uncertainty quantification. Phys. Lett. B 810, 135814 (2020)

    Google Scholar 

  146. A. Ekström, G. Hagen, Global sensitivity analysis of bulk properties of an atomic nucleus. Phys. Rev. Lett. 123, 252501 (2019)

    ADS  Google Scholar 

  147. H.L. Crawford, P. Fallon, A.O. Macchiavelli, R.M. Clark, B.A. Brown, J.A. Tostevin, D. Bazin, N. Aoi, P. Doornenbal, M. Matsushita, H. Scheit, D. Steppenbeck, S. Takeuchi, H. Baba, C.M. Campbell, M. Cromaz, E. Ideguchi, N. Kobayashi, Y. Kondo, G. Lee, I.Y. Lee, J. Lee, K. Li, S. Michimasa, T. Motobayashi, T. Nakamura, S. Ota, S. Paschalis, M. Petri, T. Sako, H. Sakurai, S. Shimoura, M. Takechi, Y. Togano, H. Wang, K. Yoneda, Shell and shape evolution at \({ N = 28 }\): the \({ {}^{40}\text{ Mg } }\) ground state. Phys. Rev. C 89, 041303 (2014)

    ADS  Google Scholar 

  148. H.L. Crawford, P. Fallon, A.O. Macchiavelli, P. Doornenbal, N. Aoi, F. Browne, C.M. Campbell, S. Chen, R.M. Clark, M.L. Cortés, M. Cromaz, E. Ideguchi, M.D. Jones, R. Kanungo, M. MacCormick, S. Momiyama, I. Murray, M. Niikura, S. Paschalis, M. Petri, H. Sakurai, M. Salathe, P. Schrock, D. Steppenbeck, S. Takeuchi, Y.K. Tanaka, R. Taniuchi, H. Wang, K. Wimmer, First spectroscopy of the near drip-line nucleus \({ {}^{40}\text{ Mg } }\). Phys. Rev. Lett. 122, 052501 (2019)

    ADS  Google Scholar 

  149. A.O. Macchiavelli, H.L. Crawford, P. Fallon, R.M. Clark, A. Poves, Weak binding effects on the structure of \({ {}^{40}\text{ Mg } }\). Eur. Phys. J. A 58, 66 (2022)

    ADS  Google Scholar 

  150. P. Navrátil, V.G. Gueorguiev, J.P. Vary, W.E. Ormand, A. Nogga, Structure of \({ A = 10-13 }\) nuclei with two- plus three-nucleon interaction from chiral effective field theory. Phys. Rev. Lett. 99, 042501 (2007)

    ADS  Google Scholar 

  151. E.A. McCutchan, C.J. Lister, M. Elvers, D. Savran, J.P. Greene, T. Ahmed, T. Ahn, N. Cooper, A. Heinz, R.O. Hughes, G. Ilie, B. Pauerstein, D. Radeck, N. Shenkov, V. Werner, Precise \({ \gamma }\)-ray intensity measurements in \({ {}^{10}\text{ B } }\). Phys. Rev. C 86, 057306 (2012)

    ADS  Google Scholar 

  152. J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, K.E. Schmidt, R.B. Wiringa, Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067 (2015)

    ADS  MathSciNet  Google Scholar 

  153. E. Lunderberg, P.A. DeYoung, Z. Kohley, H. Attanayake, T. Baumann, D. Bazin, G. Christian, D. Divaratne, S.M. Grimes, A. Haagsma, J.E. Finck, N. Frank, B. Luther, S. Mosby, T. Nagi, G.F. Peaslee, A. Schiller, J. Snyder, A. Spyrou, M.J. Strongman, M. Thoennessen, Evidence for the ground-state resonance of \({ {}^{26}\text{ O } }\). Phys. Rev. Lett. 108, 142503 (2012)

    ADS  Google Scholar 

  154. Z. Kohley, T. Baumann, D. Bazin, G. Christian, P.A. DeYoung, J.E. Finck, N. Frank, M. Jones, E. Lunderberg, B. Luther, S. Mosby, T. Nagi, J.K. Smith, J. Snyder, A. Spyrou, M. Thoennessen, Study of two-neutron radioactivity in the decay of \({ {}^{26}\text{ O } }\). Phys. Rev. Lett. 110, 152501 (2013)

    ADS  Google Scholar 

  155. C. Caesar, J. Simonis, T. Adachi, Y. Aksyutina, J. Alcantara, S. Altstadt, H. Alvarez-Pol, N. Ashwood, T. Aumann, V. Avdeichikov, M. Barr, S. Beceiro, D. Bemmerer, J. Benlliure, C.A. Bertulani, K. Boretzky, M.J.G. Borge, G. Burgunder, M. Caamano, E. Casarejos, W. Catford, J. Cederkäll, S. Chakraborty, M. Chartier, L. Chulkov, D. Cortina-Gil, U. Datta Pramanik, P. Diaz Fernandez, I. Dillmann, Z. Elekes, J. Enders, O. Ershova, A. Estrade, F. Farinon, L.M. Fraile, M. Freer, M. Freudenberger, H.O.U. Fynbo, D. Galaviz, H. Geissel, R. Gernhäuser, P. Golubev, D. Gonzalez Diaz, J. Hagdahl, T. Heftrich, M. Heil, M. Heine, A. Heinz, A. Henriques, M. Holl, J.D. Holt, G. Ickert, A. Ignatov, B. Jakobsson, H.T. Johansson, B. Jonson, N. Kalantar-Nayestanaki, R. Kanungo, A. Kelic-Heil, R. Knöbel, T. Kröll, R. Krücken, J. Kurcewicz, M. Labiche, C. Langer, T. Le Bleis, R. Lemmon, O. Lepyoshkina, S. Lindberg, J. Machado, J. Marganiec, V. Maroussov, J. Menéndez, M. Mostazo, A. Movsesyan, A. Najafi, T. Nilsson, C. Nociforo, V. Panin, A. Perea, S. Pietri, R. Plag, A. Prochazka, A. Rahaman, G. Rastrepina, R. Reifarth, G. Ribeiro, M.V. Ricciardi, C. Rigollet, K. Riisager, M. Röder, D. Rossi, J. Sanchez del Rio, D. Savran, H. Scheit, A. Schwenk, H. Simon, O. Sorlin, V. Stoica, B. Streicher, J. Taylor, O. Tengblad, S. Terashima, R. Thies, Y. Togano, E. Uberseder, J. Van de Walle, P. Velho, V. Volkov, A. Wagner, F. Wamers, H. Weick, M. Weigand, C. Wheldon, G. Wilson, C. Wimmer, J.S. Winfield, P. Woods, D. Yakorev, M.V. Zhukov, A. Zilges, M. Zoric, K. Zuber, (R3B collaboration): Beyond the neutron drip line: the unbound oxygen isotopes \({ {}^{25}\text{ O } }\) and \({ {}^{26}\text{ O } }\). Phys. Rev. C 88, 034313 (2013)

  156. Y. Kondo, T. Nakamura, R. Tanaka, R. Minakata, S. Ogoshi, N.A. Orr, N.L. Achouri, T. Aumann, H. Baba, F. Delaunay, P. Doomenbal, N. Fukuda, J. Gibelin, J.W. Hwang, N. Inabe, T. Isobe, D. Kameda, D. Kanno, S. Kim, N. Kobayashi, T. Kobayashi, T. Kubo, S. Leblond, J. Lee, F.M. Marqués, T. Motobayashi, D. Murai, T. Murakami, K. Muto, T. Nakashima, N. Nakatsuka, A. Navin, S. Nishi, H. Otsu, H. Sato, Y. Satou, Y. Shimizu, H. Suzuki, K. Takahashi, H. Takeda, S. Takeuchi, Y. Togano, A.G. Tuff, M. Vandebrouck, K. Yoneda, Nucleus \({ {}^{26}\text{ O } }\): a barely unbound system beyond the drip line. Phys. Rev. Lett. 116, 102503 (2016)

    ADS  Google Scholar 

  157. T. Al Kalanee, J. Gibelin, P. Roussel-Chomaz, N. Keeley, D. Beaumel, Y. Blumenfeld, B. Fernández-Domínguez, C. Force, L. Gaudefroy, A. Gillibert, J. Guillot, H. Iwasaki, S. Krupko, V. Lapoux, W. Mittig, X. Mougeot, L. Nalpas, E. Pollacco, K. Rusek, T. Roger, H. Savajols, N. de Séréville, S. Sidorchuk, D. Suzuki, I. Strojek, N.A. Orr, Structure of unbound neutron-rich \({ {}^{9}\text{ He } }\) studied using single-neutron transfer. Phys. Rev. C 88, 034301 (2013)

    ADS  Google Scholar 

  158. M. Vorabbi, A. Calci, P. Navrátil, M.K.G. Kruse, S. Quaglioni, G. Hupin, Structure of the exotic \({ {}^{9}\text{ He } }\) nucleus from the no-core shell model with continuum. Phys. Rev. C 97, 034314 (2018)

    ADS  Google Scholar 

  159. D. Votaw, P.A. DeYoung, T. Baumann, A. Blake, J. Boone, J. Brown, D. Chrisman, J.E. Finck, N. Frank, J. Gombas, P. Guèye, J. Hinnefeld, H. Karrick, A.N. Kuchera, H. Liu, B. Luther, F. Ndayisabye, M. Neal, J. Owens-Fryar, J. Pereira, C. Persch, T. Phan, T. Redpath, W.F. Rogers, S. Stephenson, K. Stiefel, C. Sword, A. Wantz, M. Thoennessen, Low-lying level structure of the neutron-unbound \({ N = 7 }\) isotones. Phys. Rev. C 102, 014325 (2020)

    ADS  Google Scholar 

  160. F. Barranco, G. Potel, E. Vigezzi, R.A. Broglia, \({ ^{9}\text{ Li }(d, p) }\) reaction as a specific probe of \({ ^{10}\text{ Li } }\), the paradigm of parity-inverted nuclei around the \({ N = 6 }\) closed shell. Phys. Rev. C 101, 8 (2020)

    Google Scholar 

  161. V. Efimov, Is a qualitative approach to the three-body problem useful? Comments Nucl. Part. Phys. 19, 271 (1990)

    Google Scholar 

  162. A.E.A. Amorim, T. Frederico, L. Tomio, Universal aspects of Efimov states and light halo nuclei. Phys. Rev. C 56, 0 (1997)

    Google Scholar 

  163. H.-W. Hammer, Theory of halo nuclei. arXiv:2203.13074 (2022)

  164. F. Bringas, M.T. Yamashita, T. Frederico, Triatomic continuum resonances for large negative scattering lengths. Phys. Rev. A 69, 040702 (2004)

    ADS  Google Scholar 

  165. A. Deltuva, Energies and widths of Efimov states in the three-boson continuum. Phys. Rev. C 102, 034003 (2020)

    ADS  Google Scholar 

  166. S. Dietz, H.-W. Hammer, S. König, A. Schwenk, Three-body resonances in pionless effective field theory. Phys. Rev. C 105, 064002 (2022)

    ADS  Google Scholar 

  167. E. Hiyama, R. Lazauskas, F.M. Marqués, J. Carbonell, Modeling \({ ^{19}\text{ B } }\) as a \({ ^{17}\text{ B }-n-n }\) three-body system in the unitary limit. Phys. Rev. C 100, 5 (2019)

    Google Scholar 

  168. M. Duer et al., Observation of a correlated free four-neutron system. Nature 606, 682 (2022)

    ADS  Google Scholar 

  169. L. Moschini, P. Capel, Reliable extraction of the \({ dB(\text{ E1})/dE }\) for \({ ^{11}\text{ Be } }\) from its breakup at 520 MeV/nucleon. Phys. Lett. B 790, 371 (2019)

    ADS  Google Scholar 

  170. L. Moschini, J. Yang, P. Capel, \({ ^{15}\text{ C } }\): from halo effective field theory structure to the study of transfer, breakup, and radiative-capture reactions. Phys. Rev. C 100, 044615 (2019)

    ADS  Google Scholar 

  171. P. Capel, D.R. Phillips, H.-W. Hammer, Simulating core excitation in breakup reactions of halo nuclei using an effective three-body force. Phys. Lett. B 825, 136847 (2022)

    Google Scholar 

  172. C. Hebborn, P. Capel, Halo effective field theory analysis of one-neutron knockout reactions of be11 and c15. Phys. Rev. C 104, 024616 (2021)

    ADS  Google Scholar 

  173. G.A. Baker, Neutron matter model. Phys. Rev. C 60, 6 (1999)

    Google Scholar 

  174. B.D. Esry, C.H. Greene, H. Suno, Threshold laws for three-body recombination. Phys. Rev. A 65, 4 (2001)

    Google Scholar 

  175. D.J.P.J. von Stecher, C.H. Greene, Signatures of universal four-body phenomena and their relation to the Efimov effect. Nat. Phys. 5, 233201 (2009)

    Google Scholar 

  176. T. Kraemer, M. Mark, P. Waldburger, J.G. Danzl, C. Chin, B. Engeser, A.D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl, R. Grimm, Evidence for Efimov quantum states in an ultracold gas of Caesium atoms. Nature 440, 4 (2006)

    Google Scholar 

  177. A. Zenesini, B. Huang, M. Berninger, S. Besler, H.-C. Nägerl, F. Ferlaino, R. Grimm, C.H. Greene, J. von Stecher, Resonant five-body recombination in an ultracold gas of bosonic atoms. N. J. Phys. 15, 043040 (2013)

    Google Scholar 

  178. J.P. D’Incao, S.T. Rittenhouse, N.P. Mehta, C.H. Greene, Dimer-dimer collisions at finite energies in two-component fermi gases. Phys. Rev. A 79, 4 (2009)

    Google Scholar 

  179. J. von Stecher, C.H. Greene, D. Blume, Energetics and structural properties of trapped two-component fermi gases. Phys. Rev. A 77, 20 (2008)

    Google Scholar 

  180. J. von Stecher, C.H. Greene, Spectrum and dynamics of the BCS-BEC crossover from a few-body perspective. Phys. Rev. Lett. 99, 4 (2007)

    Google Scholar 

  181. A. Kievsky, M. Gattobigio, L. Girlanda, M. Viviani, Efimov physics and connections to nuclear physics. Annu. Rev. Nucl. Part. Sci. 71 (2021)

  182. E. Garrido, C. Romero-Redondo, A. Kievsky, M. Viviani, Integral relations and the adiabatic expansion method for 1+2 reactions above the breakup threshold: helium trimers with soft-core potentials. Phys. Rev. A 86, 9 (2012)

    Google Scholar 

  183. M. Viviani, L. Girlanda, A. Kievsky, L.E. Marcucci, \({ n+^{3}\text{ H } }\), \({ p+^{3}\text{ He } }\), \({ p+^{3}\text{ H } }\), and \({ n+^{3}\text{ He } }\) scattering with the hyperspherical harmonic method. Phys. Rev. C 102, 32 (2020)

    Google Scholar 

  184. M. Viviani, E. Filandri, L. Girlanda, C. Gustavino, A. Kievsky, L.E. Marcucci, R. Schiavilla, \({ X17 }\) boson and the \({ ^{3}\text{ H }(p, e^+ e^-)^{4}\text{ He } }\) and \({ ^{3}\text{ He }(n, e^+ e^-)^{4}\text{ He } }\) processes: a theoretical analysis. Phys. Rev. C 105, 30 (2022)

    Google Scholar 

  185. M.D. Higgins, C.H. Greene, A. Kievsky, M. Viviani, Nonresonant density of states enhancement at low energies for three or four neutrons. Phys. Rev. Lett. 125, 6 (2020)

    Google Scholar 

  186. M.D. Higgins, C.H. Greene, A. Kievsky, M. Viviani, Comprehensive study of the three- and four-neutron systems at low energies. Phys. Rev. C 103, 12 (2021)

    Google Scholar 

  187. C. Romero-Redondo, E. Garrido, D.V. Fedorov, A.S. Jensen, Three-body structure of low-lying \({ ^{12}\text{ Be } }\) states. Phys. Rev. C 77, 15 (2008)

    Google Scholar 

  188. E. Garrido, A.S. Jensen, D.V. Fedorov, J.G. Johansen, Three-body properties of low-lying \({ {}^{12}\text{ Be } }\) resonances. Phys. Rev. C 86, 12 (2012)

    Google Scholar 

  189. S.T. Rittenhouse, J. von Stecher, J.P. D’Incao, N.P. Mehta, C.H. Greene, The hyperspherical four-fermion problem. J. Phys. B Atom. Mol. Opt. Phys. 44, 172001 (2011)

    ADS  Google Scholar 

  190. D. Blume, C.H. Greene, Monte Carlo hyperspherical description of helium cluster excited states. J. Chem. Phys. 112, 067 (2000)

    Google Scholar 

  191. A.J. Yates, D. Blume, Structural properties of \({ ^{4}\text{ He}_{N} }\)\({ (N = 2-10) }\) clusters for different potential models at the physical point and at unitarity. Phys. Rev. A 105, 14 (2022)

    Google Scholar 

  192. K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, M. Assie, H. Baba, T. Baba, D. Beaumel, M. Dozono, T. Fujii, N. Fukuda, S. Go, F. Hammache, E. Ideguchi, N. Inabe, M. Itoh, D. Kameda, S. Kawase, T. Kawabata, M. Kobayashi, Y. Kondo, T. Kubo, Y. Kubota, M. Kurata-Nishimura, C.S. Lee, Y. Maeda, H. Matsubara, K. Miki, T. Nishi, S. Noji, S. Sakaguchi, H. Sakai, Y. Sasamoto, M. Sasano, H. Sato, Y. Shimizu, A. Stolz, H. Suzuki, M. Takaki, H. Takeda, S. Takeuchi, A. Tamii, L. Tang, H. Tokieda, M. Tsumura, T. Uesaka, K. Yako, Y. Yanagisawa, R. Yokoyama, K. Yoshida, Candidate resonant tetraneutron state populated by the \({ ^{4}\text{ He }(^{8}\text{ He },^{8}\text{ Be}) }\) reaction. Phys. Rev. Lett. 116, 5 (2016)

    Google Scholar 

  193. L.D. Faddeev, Mathematical aspects of the three-body problem in quantum scattering theory. Zh. Eksp. Teor. Fiz 39, 1459 (196)

  194. E. Alt, P. Grassberger, W. Sandhas, Reduction of the three-particle collision problem to multi-channel two-particle Lippmann–Schwinger equations. Nucl. Phys. B 2, 180 (1967)

    Google Scholar 

  195. A. Deltuva, A. Fonseca, P. Sauer, Momentum-space treatment of the Coulomb interaction in three-nucleon reactions with two protons. Phys. Rev. C 71, 054005 (2005)

    ADS  Google Scholar 

  196. A. Deltuva, A. Fonseca, A. Kievsky, S. Rosati, P. Sauer, M. Viviani, Benchmark calculation for proton-deuteron elastic scattering observables including the Coulomb interaction. Phys. Rev. C 71, 064003 (2005)

    ADS  Google Scholar 

  197. A. Deltuva, Coulomb force effects in low-energy \({ \alpha }\)-deuteron scattering. Phys. Rev. C 74, 064001 (2006)

    ADS  Google Scholar 

  198. A. Deltuva, A. Moro, E. Cravo, F.M. Nunes, A. Fonseca, Three-body description of direct nuclear reactions: comparison with the continuum discretized coupled channels method. Phys. Rev. C 76, 064602 (2007)

    ADS  Google Scholar 

  199. S.P. Merkuriev, On the three-body Coulomb scattering problem. Ann. Phys. 130, 26 (1980)

    MathSciNet  MATH  Google Scholar 

  200. R. Lazauskas, J. Carbonell, Application of the complex-scaling method to few-body scattering. Phys. Rev. C 84, 034002 (2011)

    ADS  Google Scholar 

  201. A. Deltuva, A.C. Fonseca, R. Lazauskas, in Faddeev Equation Approach for Three-Cluster Nuclear Reactions. ed. by C. Beck (Springer, Cham, 2014), p.1

    Google Scholar 

  202. J. Nuttall, H.L. Cohen, Method of complex coordinates for three-body calculations above the breakup threshold. Phys. Rev. 188, 1542 (1966)

    ADS  Google Scholar 

  203. E. Balslev, J.M. Combes, Spectral properties of many-body Schroedinger operators with dilatation-analytic interactions. Commun. Math. Phys. 22, 280 (1971)

    ADS  MATH  Google Scholar 

  204. A.M. Mukhamedzhanov, E.O. Alt, G.V. Avakov, Momentum space integral equations for three charged particles: nondiagonal kernels. Phys. Rev. C 61, 064006 (2000)

    ADS  Google Scholar 

  205. A.M. Mukhamedzhanov, E.O. Alt, G.V. Avakov, Momentum space integral equations for three charged particles: diagonal kernels. Phys. Rev. C 63, 044005 (2001)

    ADS  Google Scholar 

  206. A.M. Mukhamedzhanov, V. Eremenko, A.I. Sattarov, Generalized Faddeev equations in the AGS form for deuteron stripping with explicit inclusion of target excitations and Coulomb interaction. Phys. Rev. C 86, 034001 (2012)

    ADS  Google Scholar 

  207. E.O. Alt, P. Grassberger, W. Sandhas, Treatment of the three- and four-nucleon systems by a generalized separable-potential model. Phys. Rev. C 1, 85 (1970)

    ADS  Google Scholar 

  208. A. Deltuva, A.C. Fonseca, Four-body calculation of proton-\(^3\)He scattering. Phys. Rev. Lett. 98, 162502 (2007)

    ADS  Google Scholar 

  209. A. Deltuva, A.C. Fonseca, Four-nucleon scattering: ab initio calculations in momentum space. Phys. Rev. C 75, 014005 (2007)

    ADS  Google Scholar 

  210. R. Lazauskas, Application of the complex-scaling method to four-nucleon scattering above break-up threshold. Phys. Rev. C 86, 044002 (2012)

    ADS  Google Scholar 

  211. R. Lazauskas, Solution of the \({ n-^{4}\text{ He } }\) elastic scattering problem using the Faddeev–Yakubovsky equations. Phys. Rev. C 97, 044002 (2018)

    ADS  Google Scholar 

  212. M. Ichimura, N. Austern, C.M. Vincent, Equivalence of post and prior sum rules for inclusive breakup reactions. Phys. Rev. C 32, 0 (1985)

    Google Scholar 

  213. J. Lei, A.M. Moro, Reexamining closed-form formulae for inclusive breakup: application to deuteron- and \({ ^{6}\text{ Li } }\)-induced reactions. Phys. Rev. C 92, 14 (2015)

    Google Scholar 

  214. J. Lei, A.M. Moro, Comprehensive analysis of large \({ \alpha }\) yields observed in \({ ^{6}\text{ Li } }\)-induced reactions. Phys. Rev. C 95, 11 (2017)

    Google Scholar 

  215. J. Lei, A.M. Moro, Unraveling the reaction mechanisms leading to partial fusion of weakly bound nuclei. Phys. Rev. Lett. 123, 6 (2019)

    Google Scholar 

  216. L.A. Souza, E.V. Chimanski, B.V. Carlson, Inclusive breakup cross sections in reactions induced by the nuclides \({ ^{6}\text{ He } }\) and \({ ^{6,7}\text{ Li } }\) in the two-body cluster model. Phys. Rev. C 104, 11 (2021)

    Google Scholar 

  217. L. Yang, C.J. Lin, H. Yamaguchi, J. Lei, P.W. Wen, M. Mazzocco, N.R. Ma, L.J. Sun, D.X. Wang, G.X. Zhang, K. Abe, S.M. Cha, K.Y. Chae, A. Diaz-Torres, J.L. Ferreira, S. Hayakawa, H.M. Jia, D. Kahl, A. Kim, M.S. Kwag, M. La Commara, R. Navarro Pérez, C. Parascandolo, D. Pierroutsakou, J. Rangel, Y. Sakaguchi, C. Signorini, E. Strano, X.X. Xu, F. Yang, Y.Y. Yang, G.L. Zhang, F.P. Zhong, J. Lubian, Insight into the reaction dynamics of proton drip-line nuclear system \({ ^{17}\text{ F } + ^{58}\text{ Ni } }\) at near-barrier energies. Phys. Lett. B 813, 136045 (2021)

    Google Scholar 

  218. J. Rangel, M.R. Cortes, J. Lubian, L.F. Canto, Theory of complete and incomplete fusion of weakly bound systems. Phys. Lett. B 803, 135337 (2020)

    Google Scholar 

  219. M.R. Cortes, J. Rangel, J.L. Ferreira, J. Lubian, L.F. Canto, Complete and incomplete fusion of \({ ^{7}\text{ Li } }\) projectiles on heavy targets. Phys. Rev. C 102, 16 (2020)

    Google Scholar 

  220. J. Lubian, J.L. Ferreira, J. Rangel, M.R. Cortes, L.F. Canto, Fusion processes in collisions of \({ ^{6}\text{ Li } }\) beams on heavy targets. Phys. Rev. C 105, 054601 (2022)

    ADS  Google Scholar 

  221. L.C. Chamon, B.V. Carlson, L.R. Gasques, D. Pereira, C. De Conti, M.A.G. Alvarez, M.S. Hussein, M.A. Cândido Ribeiro, E.S. Rossi, C.P. Silva, Toward a global description of the nucleus-nucleus interaction. Phys. Rev. C 66, 014610 (2002)

    ADS  Google Scholar 

  222. L.C. Chamon, B.V. Carlson, L.R. Gasques, São Paulo potential version 2 (spp2) and Brazilian nuclear potential (BNP). Comput. Phys. Commun. 267, 108061 (2021)

    MathSciNet  Google Scholar 

  223. S. Raman, C.W. Nestor, P. Tikkanen, Transition probability from the ground to the first-excited \(2^+\) state of even-even nuclides. At. Data Nucl. Data Tables 78, 28 (2001)

    Google Scholar 

  224. T. Kibédi, R.H. Spear, Reduced electric-octupole transition probabilities, \({ B(E3;0_1^+ \rightarrow 3_1^-) }\)-an update. At. Data Nucl. Data Tables 80, 2 (2002)

    Google Scholar 

  225. G. Potel, F. Barranco, E. Vigezzi, R.A. Broglia, Evidence for phonon mediated pairing interaction in the halo of the nucleus \({ ^{11}\text{ Li } }\). Phys. Rev. Lett. 105, 172502 (2010)

    ADS  Google Scholar 

  226. P. Descouvemont, Halo effects in the \({ ^{11}\text{ Li }(p, t)^{9}\text{ Li } }\) reaction. Phys. Rev. C 104, 9 (2021)

    Google Scholar 

  227. F. Cappuzzello, D. Carbone, M. Cavallaro, M. Bondí, C. Agodi, F. Azaiez, A. Bonaccorso, A. Cunsolo, L. Fortunato, A. Foti, S. Franchoo, E. Khan, R. Linares, J. Lubian, J.A. Scarpaci, A. Vitturi, Signatures of the giant pairing vibration in the \({ ^{14}\text{ C } }\) and \({ ^{15}\text{ C } }\) atomic nuclei. Nat. Commun. 6, 6743 (2015)

    ADS  Google Scholar 

  228. F. Barranco, G. Potel, R.A. Broglia, E. Vigezzi, Structure and reactions of \({ ^{11}\text{ Be } }\): many-body basis for single-neutron halo. Phys. Rev. Lett. 119, 082501 (2017)

    ADS  Google Scholar 

  229. M. Cavallaro, F. Cappuzzello, D. Carbone, C. Agodi, Giant pairing vibrations in light nuclei. Eur. Phys. J. A 55, 244 (2019)

    ADS  Google Scholar 

  230. M. Assié, C.H. Dasso, R.J. Liotta, A.O. Macchiavelli, A. Vitturi, The giant pairing vibration in heavy nuclei—present status and future studies. Eur. Phys. J. A 55(12), 245 (2019). https://doi.org/10.1140/epja/i2019-12829-8

    Article  ADS  Google Scholar 

  231. T. Aumann, C. Barbieri, D. Bazin, C.A. Bertulani, A. Bonaccorso, W.H. Dickhoff, A. Gade, M. Gómez-Ramos, B.P. Kay, A.M. Moro, T. Nakamura, A. Obertelli, K. Ogata, S. Paschalis, T. Uesaka, Quenching of single-particle strength from direct reactions with stable and rare-isotope beams. Prog. Part. Nucl. Phys. 118, 103847 (2021)

    Google Scholar 

  232. M. Gómez-Ramos, A.M. Moro, Binding-energy independence of reduced spectroscopic strengths derived from \({ (p,2p) }\) and \({ (p, pn) }\) reactions with nitrogen and oxygen isotopes. Phys. Lett. B 785, 511 (2018)

    ADS  Google Scholar 

  233. J. Lee, J.A. Tostevin, B.A. Brown, F. Delaunay, W.G. Lynch, M.J. Saelim, M.B. Tsang, Reduced neutron spectroscopic factors when using potential geometries constrained by Hartree–Fock calculations. Phys. Rev. C 73, 044608 (2006)

    ADS  Google Scholar 

  234. M.B. Tsang, J. Lee, S.C. Su, J.Y. Dai, M. Horoi, H. Liu, W.G. Lynch, S. Warren, Survey of excited state neutron spectroscopic factors for \({ Z = 8-28 }\) nuclei. Phys. Rev. Lett. 102, 062501 (2009)

    ADS  Google Scholar 

  235. J.A. Tostevin, A. Gade, Updated systematics of intermediate-energy single-nucleon removal cross sections. Phys. Rev. C 103, 7 (2021)

    Google Scholar 

  236. G.J. Kramer, H.P. Blok, L. Lapikás, A consistent analysis of (e, e’p) and (d,3he) experiments. Nucl. Phys. A 679, 86 (2001)

    Google Scholar 

  237. B.P. Kay, T.L. Tang, I.A. Tolstukhin, G.B. Roderick, A.J. Mitchell, Y. Ayyad, S.A. Bennett, J. Chen, K.A. Chipps, H.L. Crawford, S.J. Freeman, K. Garrett, M.D. Gott, M.R. Hall, C.R. Hoffman, H. Jayatissa, A.O. Macchiavelli, P.T. MacGregor, D.K. Sharp, G.L. Wilson, Quenching of single-particle strength in \({ A=15 }\) nuclei. Phys. Rev. Lett. 129, 152501 (2022)

    ADS  Google Scholar 

  238. B.A. Brown, B.H. Wildenthal, Status of the nuclear shell model. Ann. Rev. Nucl. Part. Sci. 38, 29–66 (1988)

    ADS  Google Scholar 

  239. O. Jensen, G. Hagen, M. Hjorth-Jensen, B.A. Brown, A. Gade, Quenching of spectroscopic factors for proton removal in oxygen isotopes. Phys. Rev. Lett. 107, 4 (2011)

    Google Scholar 

  240. C. Barbieri, Role of long-range correlations in the quenching of spectroscopic factors. Phys. Rev. Lett. 103, 4 (2009)

    Google Scholar 

  241. A. Cipollone, C. Barbieri, P. Navrátil, Chiral three-nucleon forces and the evolution of correlations along the oxygen isotopic chain. Phys. Rev. C 92, 12 (2015)

    Google Scholar 

  242. J. Wylie, J. Okołowicz, W. Nazarewicz, M. Płoszajczak, S.M. Wang, X. Mao, N. Michel, Spectroscopic factors in dripline nuclei. Phys. Rev. C 104, 7 (2021)

    Google Scholar 

  243. T. Duguet, H. Hergert, J.D. Holt, V. Somà, Nonobservable nature of the nuclear shell structure: meaning, illustrations, and consequences. Phys. Rev. C 92, 15 (2015)

    Google Scholar 

  244. A.J. Tropiano, S.K. Bogner, R.J. Furnstahl, Short-range correlation physics at low renormalization group resolution. Phys. Rev. C 104, 16 (2021)

    Google Scholar 

  245. A.J. Tropiano, S.K. Bogner, R.J. Furnstahl, M.A. Hisham, Quasi-deuteron model at low renormalization group resolution. Phys. Rev. C 106, 8 (2022)

    Google Scholar 

  246. M.A. Hisham, R.J. Furnstahl, A.J. Tropiano, Renormalization group evolution of optical potentials: explorations using a “toy’’ model. Phys. Rev. C 106, 13 (2022)

    Google Scholar 

  247. C. Hebborn, P. Capel, Sensitivity of one-neutron knockout to the nuclear structure of halo nuclei. Phys. Rev. C 100, 10 (2019)

    Google Scholar 

  248. C. Hebborn, P. Capel (in preparation) (2022)

  249. A. Gade, P. Adrich, D. Bazin, M.D. Bowen, B.A. Brown, C.M. Campbell, J.M. Cook, T. Glasmacher, P.G. Hansen, K. Hosier, S. McDaniel, D. McGlinchery, A. Obertelli, K. Siwek, L.A. Riley, J.A. Tostevin, D. Weisshaar, Reduction of spectroscopic strength: weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions. Phys. Rev. C 77, 10 (2008)

    Google Scholar 

  250. T. Aumann, C.A. Bertulani, F. Schindler, S. Typel, Peeling off neutron skins from neutron-rich nuclei: constraints on the symmetry energy from neutron-removal cross sections. Phys. Rev. Lett. 119, 5 (2017)

    Google Scholar 

  251. M.C. Atkinson, W.H. Dickhoff, Investigating the link between proton reaction cross sections and the quenching of proton spectroscopic factors in 48Ca. Phys. Lett. B 798, 135027 (2019)

    Google Scholar 

  252. S. Paschalis, M. Petri, A.O. Macchiavelli, O. Hen, E. Piasetzky, Nucleon-nucleon correlations and the single-particle strength in atomic nuclei. Phys. Lett. B 800, 135110 (2020)

    Google Scholar 

  253. F. Flavigny, A. Obertelli, A. Bonaccorso, G.F. Grinyer, C. Louchart, L. Nalpas, A. Signoracci, Nonsudden limits of heavy-ion induced knockout reactions. Phys. Rev. Lett. 108, 5 (2012)

    Google Scholar 

  254. C. Louchart, A. Obertelli, A. Boudard, F. Flavigny, Nucleon removal from unstable nuclei investigated via intranuclear cascade. Phys. Rev. C 83, 5 (2011)

    Google Scholar 

  255. M. Gómez-Ramos, J. Gómez-Camacho, A.M. Moro, Binding-energy asymmetry in absorption explored through CDCC extended for complex potentials. Phys. Lett. B 832, 137252 (2022)

    MATH  Google Scholar 

  256. C. Hebborn, G. Potel, Green’s function knockout formalism. Phys. Rev. C 107, 014607 (2023)

    ADS  Google Scholar 

  257. G.F. Grinyer, D. Bazin, A. Gade, J.A. Tostevin, P. Adrich, M.D. Bowen, B.A. Brown, C.M. Campbell, J.M. Cook, T. Glasmacher, S. McDaniel, P. Navrátil, A. Obertelli, S. Quaglioni, K. Siwek, J.R. Terry, D. Weisshaar, R.B. Wiringa, Knockout reactions from \({ p }\)-shell nuclei: tests of ab initio structure models. Phys. Rev. Lett. 106, 4 (2011)

    Google Scholar 

  258. A.N. Kuchera, D. Bazin, T. Phan, J.A. Tostevin, M. Babo, T. Baumann, P.C. Bender, M. Bowry, J. Bradt, J. Brown, P.A. DeYoung, B. Elman, J.E. Finck, A. Gade, G.F. Grinyer, M.D. Jones, B. Longfellow, E. Lunderberg, T.H. Redpath, W.F. Rogers, K. Stiefel, M. Thoennessen, D. Votaw, D. Weisshaar, K. Whitmore, R.B. Wiringa, Mirror nucleon removal reactions in \({ p }\)-shell nuclei. Phys. Rev. C 105, 8 (2022)

    Google Scholar 

  259. A.E. Lovell, F.M. Nunes, M. Catacora-Rios, G.B. King, Recent advances in the quantification of uncertainties in reaction theory. J. Phys. G Nucl. Part. Phys. 48, 014001 (2020)

    ADS  Google Scholar 

  260. A.A. Ioannides, R.C. Johnson, Propagation of a deuteron in nuclear matter and the spin dependence of the deuteron optical potential. Phys. Rev. C 17, 1331 (1978)

    ADS  Google Scholar 

  261. R.C. Johnson, J.A. Tostevin, M.H. Lopes, Antisymmetrization effects in deuteron-nucleus elastic scattering. Nucl. Phys. 1980, 750 (1981)

    Google Scholar 

  262. R.C. Johnson, N. Austern, M.H. Lopes, Antisymmetrized deuteron stripping. Phys. Rev. C 26, 348–356 (1982)

    ADS  Google Scholar 

  263. J.A. Tostevin, M.H. Lopes, R.C. Johnson, Antisymmetrization corrections in deuteron elastic scattering and deuteron-induced transfer reactions. Nucl. Phys. A 465, 22 (1987)

    Google Scholar 

  264. M.J. Dinmore, N.K. Timofeyuk, J.S. Al-Khalili, R.C. Johnson, Effects of an induced three-body force in the incident channel of \((d, p)\) reactions. Phys. Rev. C 99, 064612 (2019)

    ADS  Google Scholar 

  265. M. Theeten, H. Matsumura, M. Orabi, D. Baye, P. Descouvemont, Y. Fujiwara, Y. Suzuki, Three-body model of light nuclei with microscopic nonlocal interactions. Phys. Rev. C 76, 11 (2007)

    Google Scholar 

  266. M.L. Avila, K.E. Rehm, S. Almaraz-Calderon, A.D. Ayangeakaa, C. Dickerson, C.R. Hoffman, C.L. Jiang, B.P. Kay, J. Lai, O. Nusair, R.C. Pardo, D. Santiago-Gonzalez, R. Talwar, C. Ugalde, Study of \({ (\alpha, p) }\) and \({ (\alpha, n) }\) reactions with a multi-sampling ionization chamber. Nucl. Instrum. Methods. Phys. Res. A 859, 8 (2017)

    Google Scholar 

  267. J.P. Schiffer, C.R. Hoffman, B.P. Kay, J.A. Clark, C.M. Deibel, S.J. Freeman, A.M. Howard, A.J. Mitchell, P.D. Parker, D.K. Sharp, J.S. Thomas, Test of sum rules in nucleon transfer reactions. Phys. Rev. Lett. 108, 5 (2012)

    Google Scholar 

  268. J.P. Schiffer, C.R. Hoffman, B.P. Kay, J.A. Clark, C.M. Deibel, S.J. Freeman, M. Honma, A.M. Howard, A.J. Mitchell, T. Otsuka, P.D. Parker, D.K. Sharp, J.S. Thomas, Valence nucleon populations in the Ni isotopes. Phys. Rev. C 87, 15 (2013)

    Google Scholar 

  269. K. Wimmer, Nucleon transfer reactions with radioactive beams. J. Phys. G Nucl. Part. Phys. 45, 033002 (2018)

    ADS  Google Scholar 

  270. P. Capel, F.M. Nunes, Peripherality of breakup reactions. Phys. Rev. C 75, 6 (2007)

    Google Scholar 

  271. D.R. Phillips et al., Get on the BAND wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics. J. Phys. G Nucl. Part. Phys. 48, 072001 (2021)

    ADS  Google Scholar 

  272. X. Zhang, K.M. Nollett, D.R. Phillips, Halo effective field theory constrains the solar \({ ^7\text{ Be } + p \rightarrow ^8\text{ B } + \gamma }\) rate. Phys. Lett. B 751, 535 (2015)

    ADS  Google Scholar 

  273. C. Iliadis, K. Anderson, A. Coc, F. Timmes, S. Starrfield, Bayesian estimation of thermonuclear reaction rates. Astrophys. J. 831, 107 (2016)

    ADS  Google Scholar 

  274. B. Acharya, B.D. Carlsson, A. Ekström, C. Forssén, L. Platter, Uncertainty quantification for proton-proton fusion in chiral effective field theory. Phys. Lett. B 760, 584 (2016)

    ADS  Google Scholar 

  275. S. Wesolowski, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Exploring Bayesian parameter estimation for chiral effective field theory using nucleon-nucleon phase shifts. J. Phys. G Nucl. Part. Phys. 46, 045102 (2019)

    ADS  Google Scholar 

  276. X. Zhang, K.M. Nollett, D.R. Phillips, \({ S }\)-factor and scattering-parameter extractions from \({ {}^{3}\text{ He } +{}^{4}\text{ He } \rightarrow {}^{7}\text{ Be } + \gamma }\). J. Phys. G Nucl. Part. Phys. 47, 054002 (2020)

    ADS  Google Scholar 

  277. P. Premarathna, G. Rupak, Bayesian analysis of capture reactions \({ ^3\text{ He }(\alpha,\gamma )^7\text{ Be } }\) and \({ ^3\text{ H }(\alpha,\gamma )^7\text{ Li } }\). Eur. Phys. J. A 56, 166 (2022)

    ADS  Google Scholar 

  278. B. Acharya, S. Bacca, Neutrino-deuteron scattering: uncertainty quantification and new \({ L_{1, A} }\) constraints. Phys. Rev. C 101, 015505 (2020)

    ADS  Google Scholar 

  279. J.A. Melendez, R.J. Furnstahl, D.R. Phillips, M.T. Pratola, S. Wesolowski, Quantifying correlated truncation errors in effective field theory. Phys. Rev. C 100, 044001 (2019)

    ADS  Google Scholar 

  280. P. Maris et al., Light nuclei with semilocal momentum-space regularized chiral interactions up to third order. Phys. Rev. C 103, 054001 (2021)

    ADS  Google Scholar 

  281. R. Higa, P. Premarathna, G. Rupak, Coupled-channel treatment of \({ ^7\text{ Be }(p,\gamma )^8\text{ B } }\) in effective field theory. arXiv:2010.13003 (2020)

  282. C. Drischler, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, How well do we know the neutron-matter equation of state at the densities inside neutron stars? A Bayesian approach with correlated uncertainties. Phys. Rev. Lett. 125, 202702 (2020)

    ADS  Google Scholar 

  283. C. Drischler, J.A. Melendez, R.J. Furnstahl, D.R. Phillips, Quantifying uncertainties and correlations in the nuclear-matter equation of state. Phys. Rev. C 102, 054315 (2020)

    ADS  Google Scholar 

  284. M. Poudel, D.R. Phillips, Effective field theory analysis of \({ ^{3}\text{ He }-\alpha }\) scattering data. J. Phys. G Nucl. Part. Phys. 49, 045102 (2022)

    ADS  Google Scholar 

  285. B. Acharya, S. Bacca, Gaussian process error modeling for chiral effective-field-theory calculations of \(np{\leftrightarrow }d{\gamma }\) at low energies. Phys. Lett. B 827, 137011 (2022)

    Google Scholar 

  286. D. Odell, C.R. Brune, D.R. Phillips, R.J. deBoer, S.N. Paneru, Performing Bayesian analyses with AZURE2 using BRICK: an application to the \(^7\)Be system. Front. Phys. 10, 888476 (2022)

    Google Scholar 

  287. S. Wesolowski, I. Svensson, A. Ekström, C. Forssén, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Rigorous constraints on three-nucleon forces in chiral effective field theory from fast and accurate calculations of few-body observables. Phys. Rev. C 104, 064001 (2021)

    ADS  Google Scholar 

  288. B. Acharya, S. Bacca, F. Bonaiti, S.S.L. Muli, J.E. Sobczyk, Uncertainty quantification in electromagnetic observables of nuclei. arXiv:2210.04632 (2022)

  289. A.E. Lovell, F.M. Nunes, Constraining transfer cross sections using Bayes’ theorem. Phys. Rev. C 97, 16 (2018)

    Google Scholar 

  290. G.B. King, A.E. Lovell, F.M. Nunes, Uncertainty quantification due to optical potentials in models for \({ (d, p) }\) reactions. Phys. Rev. C 98, 9 (2018)

    Google Scholar 

  291. M. Catacora-Rios, G.B. King, A.E. Lovell, F.M. Nunes, Exploring experimental conditions to reduce uncertainties in the optical potential. Phys. Rev. C 100, 10 (2019)

    Google Scholar 

  292. M. Catacora-Rios, G.B. King, A.E. Lovell, F.M. Nunes, Statistical tools for a better optical model. Phys. Rev. C 104, 9 (2021)

    Google Scholar 

  293. G.B. King, A.E. Lovell, L. Neufcourt, F.M. Nunes, Direct comparison between Bayesian and frequentist uncertainty quantification for nuclear reactions. Phys. Rev. Lett. 122, 5 (2019)

    Google Scholar 

  294. J.A. Melendez, C. Drischler, R.J. Furnstahl, A.J. Garcia, X. Zhang, Model reduction methods for nuclear emulators. arXiv:2203.05528 (2022)

  295. E. Bonilla, P. Giuliani, K. Godbey, D. Lee, Training and projecting: A reduced basis method emulator for many-body. Phys. Rev. C 106, 054322 (2022)

    ADS  Google Scholar 

  296. O. Sürer, F.M. Nunes, M. Plumlee, S.M. Wild, Uncertainty quantification in breakup reactions. Phys. Rev. C 106, 12 (2022)

    Google Scholar 

  297. R.J. Furnstahl, A.J. Garcia, P.J. Millican, X. Zhang, Efficient emulators for scattering using eigenvector continuation. Phys. Lett. B 809, 135719 (2020)

    MATH  Google Scholar 

  298. C. Drischler, M. Quinonez, P.G. Giuliani, A.E. Lovell, F.M. Nunes, Toward emulating nuclear reactions using eigenvector continuation. Phys. Lett. B 823, 136777 (2021)

    MathSciNet  MATH  Google Scholar 

  299. J.A. Melendez, C. Drischler, A.J. Garcia, R.J. Furnstahl, X. Zhang, Fast & accurate emulation of two-body scattering observables without wave functions. Phys. Lett. B 821, 136608 (2021)

    MathSciNet  MATH  Google Scholar 

  300. D. Bai, Z. Ren, Generalizing the calculable \({ R }\)-matrix theory and eigenvector continuation to the incoming wave boundary condition. Phys. Rev. C 103, 014612 (2021)

    ADS  Google Scholar 

  301. X. Zhang, R.J. Furnstahl, Fast emulation of quantum three-body scattering. Phys. Rev. C 105, 064004 (2021)

    ADS  Google Scholar 

  302. A.O. Macchiavelli, How to study Efimov states in exotic nuclei? Few Body Syst. 56(11–12), 773–778 (2015)

    ADS  Google Scholar 

  303. V. Efimov, Energy levels arising form the resonant two-body forces in a three-body system. Phys. Lett. B 33, 563 (1970)

    ADS  Google Scholar 

  304. V.N. Efimov, Weakly-bound states of 3 resonantly-interacting particles. Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  305. L.D. Landau, E.M. Lifshits, Quantum Mechanics: Non-Relativistic Theory, vol. 3 (Butterworth-Heinemann, Oxford, 1991)

    Google Scholar 

  306. S.K. Adhikari, L. Tomio, Efimov effect in the three-nucleon system. Phys. Rev. C 26, 83 (1982)

    ADS  Google Scholar 

  307. G. Rupak, A. Vaghani, R. Higa, U. van Kolck, Fate of the neutron-deuteron virtual state as an Efimov level. Phys. Lett. B 791, 414 (2019)

    ADS  MathSciNet  Google Scholar 

  308. K. Kuhn et al., Experimental study of the nature of the \(1^{-}\) and \(2^{-}\) excited states in \(^{10}\)Be using the \(^{11}\)Be\((p, d)\) reaction in inverse kinematics. Phys. Rev. C 104, 044601 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the FRIB Theory Alliance award no. DE-SC0013617. This work is supported by the National Science Foundation under Grant Nos. PHY-1555030, PHY-2111426, PHY-1913728, PHY-2209060, PHY-2044632, PHY-1912350, OAC-2004601 and the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract Nos. DE-AC52-07NA27344, DE-AC05-00OR22725, DE-SC0021422, DE-AC02-06CH1135, DE-FG02-93ER40756, DE-SC0020451, and DE-AC05-06OR23177. GP’s work is supported by the LLNL-LDRD Program under Project No. 21-ERD-006. KSB greatly appreciates the financial support of a research fellowship from the Louisiana Board of Regents; it benefited from computing resources provided by the National Energy Research Scientific Computing Center NERSC (under Contract No. DE-AC02-05CH11231), Frontera computing project at the Texas Advanced Computing Center (under National Science Foundation award OAC-1818253) and LSU (www.hpc.lsu.edu). FB’s work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Project-ID 279384907 - SFB 1245. FB would like to acknowledge Sonia Bacca for useful discussions. TF’s work is partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (2017/05660-0, 2019/07767-1), Conselho Nacional de Desenvolvimento Científico e Tecnológico (308486/2015-3) and the INCT-FNA project No. 464898/2014-5.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kévin Fossez, Chloë Hebborn, Sebastian König or Lucas Platter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazin, D., Becker, K., Bonaiti, F. et al. Perspectives on Few-Body Cluster Structures in Exotic Nuclei. Few-Body Syst 64, 25 (2023). https://doi.org/10.1007/s00601-023-01794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01794-0

Navigation