Abstract
This study evaluates the Arctic sea-ice simulation of the SODA3 dataset driven by different atmospheric forcing fields and explores the errors of the Arctic sea-ice simulation caused by the forcing field. We find that the SODA3 data driven by different forcing fields represent a significant systematical error in the simulation of Arctic sea-ice concentration, showing a low concentration of thick ice and a high concentration of thin ice. In terms of sea-ice extent, the SODA3 data from different versions well characterize the interannual variability and declining trend in the observed data, but they overestimate the overall Arctic sea-ice extent, which is related to excessive simulation of ice in the sea-ice margin. Compared to observations, all the chosen SODA3 reanalysis versions driven by different atmospheric forcing generally tend to underestimate the Arctic sea-ice thickness, especially for thick ice in the multi-year sea-ice regions. Inaccurate simulations of Arctic sea-ice transport may partly explain the error in SODA3 sea-ice thickness in multi-year sea-ice areas. The results of different SDOA3 versions differ greatly in the Beaufort Sea, the Fram Strait, and the Central Arctic Sea. The difference in sea-ice thickness among different SODA3 versions is primarily due to the thermodynamic contribution, which may come from the diversity of atmospheric forcing fields. Our work provides a reference for using SODA3 data to study Arctic sea ice.
摘要
本文评估了由不同大气强迫场驱动的SODA3数据集对北极海冰的模拟能力,并探究了大气强迫场对北极海冰模拟的误差来源。结果表明,SODA3数据集对北极海冰密集度的模拟存在显著的系统偏差,表现为厚冰区海冰密集度偏低、薄冰区海冰密集度偏高;对海冰范围模拟较好,能再现与观测一致的年际变化和下降趋势,但由于边缘区的高估,导致整个北极海冰范围偏高。与观测结果相比,SODA3再分析数据集均显示对北极海冰厚度的低估,特别是多年海冰厚冰区。SODA3对北极海冰输运模拟的高估在一定程度上解释了这种多年海冰区海冰厚度的偏差。不同大气强迫场驱动的SODA3的海冰厚度模拟在波弗特海、弗拉姆海峡和北冰洋中部存在较大差异,这主要受大气强迫场不确定性带来的海冰热力学过程的影响。本文的工作将为利用SODA3数据进行北极海冰研究提供一定的参考。
Similar content being viewed by others
References
Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 2903–2921, https://doi.org/10.1175/JCLI3428.1.
Cai, L., V. A. Alexeev, and J. E. Walsh, 2020: Arctic sea ice growth in response to synoptic- and large-scale atmospheric forcing from CMIP5 models. J. Climate, 33, 6083–6099, https://doi.org/10.1175/JCLI-D-19-0326.1.
Carton, J. A., G. A. Chepurin, and L. G. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 6967–6983, https://doi.org/10.1175/JCLI-D-18-0149.1.
Cavalieri, D. J., J. P. Crawford, M. R. Drinkwater, D. T. Eppler, L. D. Farmer, R. R. Jentz, and C. C. Wackerman, 1991: Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Satellite Program special sensor microwave imager. J. Geophys. Res.: Oceans, 96, 21 989–22 008, https://doi.org/10.1029/91JC02335.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627–637, https://doi.org/10.1038/ngeo2234.
Comiso, J. C., 2017: Bootstrap sea ice concentrations from nim-bus-7 SMMR and DMSP SSM/I-SSMIS, version 3. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. [Available online from https://nsidc.org/data/nsidc-0079/versions/3j.
Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 2755–2781, https://doi.org/10.1175/JCLI-D-11-00316.1.
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017: Updated daily. Sea Ice Index, Version 3. NSIDC, National Snow and Ice Data Center. Boulder, Colorado, USA. [Available online from https://nsidc.org/data/G02135/versions/3]
Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice pre-dictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 142, 546–561, https://doi.org/10.1002/qj.2401.
Holland, P. R., 2014: The seasonality of Antarctic sea ice trends. Geophys. Res. Lett., 41, 4230–4237, https://doi.org/10.1002/2014GL060172.
Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5, 872–875, https://doi.org/10.1038/ngeo1627.
Holland, P. R., and N. Kimura, 2016: Observed concentration budgets of Arctic and Antarctic sea ice. J. Climate, 29, 5241–5249, https://doi.org/10.1175/JCLI-D-16-0121.1.
Intergovernmental Panel on Climate Change (IPCC), 2022: The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, https://doi.org/10.1717/9781009157964.
Kovacs, K. M., C. Lydersen, J. E. Overland, and S. E. Moore, 2011: Impacts of changing sea-ice conditions on Arctic marine mammals. Marine Biodiversity, 41, 181–194, https://doi.org/10.1007/s12526-010-0061-0.
Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res.: Oceans, 114, C07005, 10./299/0099JC005312.
Laxon, S. W., and Coauthors, 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732–737, 10.1002/grl.50193.
Lindsay, R. W., and J. Zhang, 2005: The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18, 4879–4894, 10.1175/JCLI3587.1.
Maykut, G. A., 1982: Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res.: Oceans, 87, 7971–7984, 10.1029/JC087iC10p07971.
Notz, D., A. Jahn, M. Holland, E. Hunke, F. Massonnet, J. Stroeve, B. Tremblay, and M. Vancoppenolle, 2016: The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations. Geoscientific Model Development, 9, 3427–3446, 10.5194/gmd-9-3427-2016.
Proshutinsky, A., and Coauthors, 2011: Recent advances in Arctic Ocean studies employing models from the Arctic Ocean model intercomparison project. Oceanography, 24, 102–113, 10.5670/oceanog.2011.61.
Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere, 11, 1607–1623, l0.5194tCClll-1607-2017.
Sato, K., and J. Inoue, 2018: Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations. Climate Dyn., 50, 289–301, https://doi.org/10.1007/s00382-017-3607-z.
Schroeter, S., W. Hobbs, N. L. Bindoff, R. Massom, and R. Matear, 2018: Drivers of Antarctic sea ice volume change in CMIP5 models. J. Geophys. Res.: Oceans, 123, 7914–7938, https://doi.org/10.1029/2018JC014177.
Schweiger, A., R. Lindsay, J. L. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res.: Oceans, 116, C00D06, https://doi.org/10.1029/2011JC007084.
Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337, 10.103n/nurure09051.
Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959–964, 10.1002/grl.50174.
Serreze, M. C., and R. G. Barry, 1988: Synoptic activity in the Arctic Basin, 1979–85. J. Climate, 1, 1276–1295, 10.1175/1520-0442(1988)001<1276:SAITAB>2.0.CO;2.
Smith, L. C., and S. R. Stephenson, 2013: New Trans-Arctic shippimg routes navigable by midcentury. Proceedings of the National Academy of Sciences of the United States of America, 110, E1191–E1195, l0.137P/anas.1214212110.
Stroeve, J., and D. Notz, 2015: Insights on past and future sea-ice evolution from combining observations and models. Global and Planetary Change, 135, 119–132, l0.1016/j.gloplacha.2015.10.011.
Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 1005–1027, https://doi.org/10.1007/s10584-011-0101-1.
Tilling, R. L., A. Ridout, A. Shepherd, and D. J. Wingham, 2015: Increased Arctic sea ice volume after anomalously low melting in 2013. Nature Geoscience, 8, 643–646, https://doi.org/10.1038/ngeo2489.
Tschudi, M. A., W. N. Meier, and J. S. Stewart, 2020: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020.
Tsujino, H., and Coauthors, 2020: Evaluation of global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020.
Vancoppenolle, M., and Coauthors, 2013: Role of sea ice in global biogeochemical cycles: Emerging views and challenges. Quaternary Science Reviews, 79, 207–230, https://doi.org/10.1016/j.quascirev.2013.04.011.
Wang, Q., and Coauthors, 2016: An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Modelling, 99, 110–132, https://doi.org/10.1016/j.ocemod.2015.12.008.
Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525–531, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.
Zhang, J. L., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845–861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.
Zheng, F., and J. Zhu, 2008: Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. J. Geophys. Res.: Oceans, 113, C07002, https://doi.org/10.1029/2007JC004621.
Zheng, F., Y. Sun, Q. H. Yang, and L. J. Mu, 2021: Evaluation of Arctic sea-ice cover and thickness simulated by MITgcm. Adv. Atmos. Sci., 38, 29–48, https://doi.org/10.1007/s00376-020-9223-6.
Acknowledgements
The authors are grateful to the providers of the publicly accessible data used in the paper. This study is supported by the Opening Project of Key Laboratory of Marine Science and Numerical Modeling, MNR (2020-ZD-01), the Special Funds for Creative Research (2022C61540), the National Natural Science Foundation (Grant Nos. 41776004, 41876224), the Fundamental Research Funds for the Central Universities (B210203020), and the Opening Project of Key Laboratory of Marine Environmental Information Technology (20195052912).
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights
• Inaccurate simulations of Arctic sea-ice extent in SODA3 result from overestimating ice concentration along the sea-ice edge zone.
• The overestimation of sea-ice drift rates in SODA3 is mainly responsible for inaccurate simulations of Arctic sea-ice thickness.
• Model uncertainty in SODA3 primarily results in the overestimation of sea-ice drift rates.
• Inter-version differences of SODA3 in sea-ice thickness may be dominated by thermodynamic processes.
This paper is a contribution to the special issue on Changing Arctic Climate and Low/Mid-latitudes Connections.
Rights and permissions
About this article
Cite this article
Ge, Z., Wang, X. & Wang, X. Evaluation of the Arctic Sea-Ice Simulation on SODA3 Datasets. Adv. Atmos. Sci. 40, 2302–2317 (2023). https://doi.org/10.1007/s00376-023-2320-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-023-2320-6