Abstract
A regional Arctic Ocean configuration of the Massachusetts Institute of Technology General Circulation Model (MITgcm) is applied to simulate the Arctic sea ice from 1991 to 2012. The simulations are evaluated by comparing them with observations from different sources. The results show that MITgcm can reproduce the interannual and seasonal variability of the sea-ice extent, but underestimates the trend in sea-ice extent, especially in September. The ice concentration and thickness distributions are comparable to those from the observations, with most deviations within the observational uncertainties and less than 0.5 m, respectively. The simulated sea-ice extents are better correlated with observations in September, with a correlation coefficient of 0.95, than in March, with a correlation coefficient of 0.83. However, the distributions of sea-ice concentration are better simulated in March, with higher pattern correlation coefficients (0.98) than in September. When the model underestimates the atmospheric influence on the sea-ice evolution in March, deviations in the sea-ice concentration arise at the ice edges and are higher than those in September. In contrast, when the model underestimates the oceanic boundaries’ influence on the September sea-ice evolution, disagreements in the distribution of the sea-ice concentration and its trend are found over most marginal seas in the Arctic Ocean. The uncertainties of the model, whereby it fails to incorporate the atmospheric information in March and oceanic information in September, contribute to varying model errors with the seasons.
摘要
本文应用了一个区域的MITgcm(麻省理工学院通用环流模式)海洋-海冰耦合模式模拟了1991–2012年北极海冰的长时期变化,并通过和不同来源的卫星观测对比评估了不同时间尺度的海冰模拟。结果表明,MITgcm能很好地模拟出观测的北极海冰范围的年际和季节变化,但是模式总体低估了海冰范围的减少趋势(以九月最显著)。在空间分布上,模式模拟的海冰密集度的误差处于观测的不确定性范围内,海冰厚度的误差集中在0.5m以下。模式模拟的九月海冰范围和观测的相关性(SCC为0.95)要高于三月海冰范围和观测的相关(SCC为0.83)。但是在三月,海冰密集度分布模拟效果要好于九月。进一步对误差的解析表明,当模式低估三月大气强迫对海冰模拟影响时,三月海冰密集度偏差主要出现在海冰边缘,且数值明显高于九月。而当模式低估了海洋边界对九月海冰模拟影响时,九月海冰密集度及其变化趋势的误差出现在北冰洋大部分边缘海域。这一结果揭示了海冰模拟的模式误差来源存在显著的季节变化,主要是三月对大气强迫的响应不足和其九月对海洋边界条件的响应不足。
Similar content being viewed by others
References
Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Saiintty. Vol. 2, World Ocean Atlas 2005. NOAA Atlas Nesdis 62, S. Levitus, Ed., NOAA, Sliver Spring, Md., 182 pp.
Bushuk, M., R. Msadek, M. Winton, G. A. Vecchi, R. Gudgel, A. Rosati, and X. S. Yang, 2017: Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophys. Res. Lett., 44, 4953–4964, https://doi.org/10.1002/2017GL073155.
Carmack, E., I. Polyakov, L. Padman, I. Fer, and P. Winsor, 2015: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new arctic. Bull. Amer. Meteor. Soc., 96, 2079–2105, https://doi.org/10.1175/BAMS-D-13-00177.1.
Cavalieri, D. J., C. L. Parkinson, N. Digirolamo, and A. Ivanoff, 2012: Intersensor calibration between F13 SSMI and F17 SSMIS for global sea ice data records. IEEE Geoscience and Remote Sensing Letters, 9, 233–236, https://doi.org/10.1109/LGRS.2011.2166754.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627–637, https://doi.org/10.1038/ngeo2234.
Comiso, J. C., 2017: Bootstrap sea ice concentrations from nim-bus-7 SMMR and DMSP SSM/I-SSMIS, version 3. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. [Available online from https://nsidc.org/data/nsidc-0079/versions/3]
Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res., 122, 6883–6900, https://doi.org/10.1002/2017JC012768.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.
Eicken, H., 2013: Arctic sea ice needs better forecasts. Nature, 497, 431–433, https://doi.org/10.1038/497431a.
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel. 2017: Updated daily. Sea Ice Index, Version 3. [Indicate subset used]. NSIDC, National Snow and Ice Data Center. Boulder, Colorado, USA. [Available online from https://nsidc.org/data/G02135/versions/3]
Fichefet, T., and P. Gaspar, 1988: A model study of upper ocean-sea ice interactions. J. Phys. Oceanogr., 18, 181–195, https://doi.org/10.1175/1520-0485(1988)018<0181:AMSOUO>2.0.CO;2.
Francis, J. A., 2013: The where and when of wetter and drier: Disappearing Arctic sea ice plays a role. Environmental Research Letters, 8, 041002, https://doi.org/10.1088/1748-9326/8/4/041002.
Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.
Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 141, 546–561, https://doi.org/10.1002/qj.2401.
Hendricks, S., and R. Ricker, 2019: Product user guide & algorithm specification: AWI CryoSat-2 sea ice thickness (version 2.1). [Available online from https://epic.awi.de/id/eprint/49542/]
Holland, M. M., C. M. Bitz, M. Eby, and A. J. Weaver, 2001: The role of ice-ocean interactions in the variability of the North Atlantic Thermohaline Circulation. J. Climate, 14, 656–675, https://doi.org/10.1175/1520-0442(2001)014<0656:TROIOI>2.0.CO;2.
Holland, M. M., M. C. Serreze, and J. Stroeve, 2010: The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Climate Dyn., 34, 185–200, https://doi.org/10.1007/s00382-008-0493-4.
Hopsch, S., J. Cohen, and K. Dethloff, 2012: Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A: Dynamic Meteorology and Oceanography, 64, 18624, https://doi.org/10.3402/tellusa.v64i0.18624.
Kaleschke, L., C. Lüpkes, T. Vihma, J. Haarpaintner, A. Bochert, J. Hartmann, and G. Heygster, 2001: SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Canadian Journal of Remote Sensing, 27, 526–537, https://doi.org/10.1080/07038992.2001.10854892.
Kwok, R., and G. F. Cunningham, 2008: ICESat over Arctic sea ice: Estimation of snow depth and ice thickness. J. Geophys. Res., 113, C08010, https://doi.org/10.1029/2008JC004753.
Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 114, C07005, https://doi.org/10.1029/2009JC005312.
Lisæter, K. A., J. Rosanova, and G. Evensen, 2003: Assimilation of ice concentration in a coupled ice-ocean model, using the Ensemble Kalman filter. Ocean Dyn., 53, 368–388, https://doi.org/10.1007/s10236-003-0049-4.
Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, 4074–4079, https://doi.org/10.1073/pnas.1114910109.
Liu, J. P., M. R. Song, R. M. Horton, and Y. Y. Hu, 2013: Reducing spread in climate model projections of a September icefree Arctic. Proceedings of the National Academy of Sciences of the United States of America, 110, 12 571–12 576, https://doi.org/10.1073/pnas.1219716110.
Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005. NOAA Atlas Nesdis 61, S. Levitus, Ed., NOAA, Sliver Spring, Md., 182 pp.
Losch, M., D. Menemenlis, J. M. Campin, P. Heimbach, and C. Hill, 2010: On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameteriza-tions. Ocean Modelling, 33, 129–144, https://doi.org/10.1016/j.ocemod.2009.12.008.
Maykut, G. A., 1982: Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res., 17, 7971–7984, https://doi.org/10.1029/JC087iC10p07971.
Meier, W., and D. Notz, 2010: A note on the accuracy and reliability of satellite-derived passive microwave estimates of sea-ice extent. CliC Arctic sea ice Working Group, Consensus document. CLIC International Project Office, Tromsø, Norway. [Available online from https://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reliability.pdf]
Menemenlis, D., J. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlok, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31, 13–21.
Miles, M. W., D. V. Divine, T. Furevik, E. Jansen, M. Moros, and A. E. J. Ogilvie, 2014: A signal of persistent Atlantic mul-tidecadal variability in Arctic sea ice. Geophys. Res. Lett., 41, 463–469, https://doi.org/10.1002/2013GL058084.
Nguyen, A. T., D. Menemenlis, and R. Kwok, 2011: Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. J. Geophys. Res., 116, C04025, https://doi.org/10.1029/2010JC006573.
Notz, D., 2014: Sea-ice extent and its trend provide limited metrics of model performance. The Cryosphere, 8, 229–243.
Notz, D., A. Jahn, M. Holland, E. Hunke, F. Massonnet, J. Stroeve, B. Tremblay, and M. Vancoppenolle, 2016: The CMIP6 sea-ice model intercomparison project (SIMIP): Understanding sea ice through climate-model simulations. Geoscientific Model Development, 9, 3427–3446, https://doi.org/10.5194/gmd-9-3427-2016.
Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369–432, https://doi.org/10.2151/jmsj.85.369.
Overland, J. E., and Coauthors, 2016: Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change, 6, 992–999, https://doi.org/10.1038/nclimate3121.
Overland, J. E., M. Wang, and S. Salo, 2008: The recent Arctic warm period. Tellus A, 60, 589–597, https://doi.org/10.1111/j.1600-0870.2008.00327.x.
Regehr, E. V., C. M. Hunter, H. Caswell, S. C. Amstrup, and I. Stirling, 2010: Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. Journal of Animal Ecology, 79, 117–127, https://doi.org/10.1111/j.1365-2656.2009.01603.x.
Sandø, A. B., J. E. Ø. Nilsen, Y. Gao, and K. Lohmann, 2010: Importance of heat transport and local air-sea heat fluxes for Barents Sea climate variability. J. Geophys. Res., 115, C07013, https://doi.org/10.1029/2009JC005884.
Sandø, A. B., Y. Gao, and H. R. Langehaug, 2014: Poleward ocean heat transports, sea ice processes, and Arctic sea ice variability in NorESM1-M simulations. J. Geophys. Res., 119, 2095–2108, https://doi.org/10.1002/2013JC009435.
Sato, K., and J. Inoue, 2018: Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations. Climate Dyn., 50, 289–301, https://doi.org/10.1007/s00382-017-3607-z.
Schweiger, A., R. Lindsay, J. L. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084.
Serreze, M. C., and R. G. Barry, 1988: Synoptic activity in the Arctic Basin, 1979–85. J. Climate, 1, 1276–1295, https://doi.org/10.1175/1520-0442(1988)001<1276:SAITAB>l2.0.CO;2.
Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2008: The emergence of surface-based Arctic amplification. The Cryosphere Discussions, 2, 601–622, https://doi.org/10.5194/tcd-2-601-2008.
Serreze, M. C., A. P. Barrett, A. D. Crawford, and R. A. Woodgate, 2019: Monthly variability in Bering Strait oceanic volume and heat transports, links to atmospheric circulation and ocean temperature, and implications for sea ice conditions. J. Geophys. Res., 124, 9317–9337, https://doi.org/10.1029/2019JC015422.
SIMIP Community., 2020: Arctic sea ice in CMIP6. Geophys. Res. Let, 47, e2019GL086749, https://doi.org/10.1299/2019GL086749.
Smedsrud, L. H., R. Ingvaldsen, J. E. Ø. qingNilsen, and Ø. Skag-seth, 2010: Heat in the Barents Sea: Transport, storage, and surface fluxes. Ocean Science, 6, 219–234, https://doi.org/10.5194/os-6-219-2010.
Smith, L. C., and S. R. Stephenson, 2013: New Trans-Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences of the United States of America, 110, E1191–E1195, https://doi.org/10.1073/pnas.1214212110.
Steele, M., W. Ermold, and J. L. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, https://doi.org/10.1029/2007GL031651.
Stroeve, J., and D. Notz, 2015: Insights on past and future sea-ice evolution from combining observations and models. Global and Planetary Change, 135, 119–132, https://doi.org/10.1016/j.gloplacha.2015.10.011.
Stroeve, J. and W. N. Meier. 2016. Gridded Observational Sea Ice Thickness Products, Version 1. [Indicate subset used]. NSIDC, National Snow and Ice Data Center, Boulder, Colorado, USA. [Available online from https://nsidc.org/data/NSIDC-0690/versions/1]
Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012a: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 1005–1027, https://doi.org/10.1007/s10584-011-0101-1.
Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012b: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012g1052676.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/2000JD900719.
Tilling, R. L., A. Ridout, A. Shepherd, and D. J. Wingham, 2015: Increased Arctic sea ice volume after anomalously low melting in 2013. Nature Geoscience, 8, 643–646, https://doi.org/10.1038/ngeo2489.
Yang, Q. H., and Coauthors, 2014: Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter. J. Geophys. Res., 119, 6680–6692, https://doi.org/10.1002/2014JC009963.
Yang, Q. H., M. Losch, S. N. Losa, T. Jung, and L. Nerger, 2016: Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice-ocean model. J. Atmos. Oceanic Technol., 33, 397–407, https://doi.org/10.1175/JTECH-D-15-0176.1.
Yang, Q. H., S. N. Losa, M. Losch, J. P. Liu, Z. H. Zhang, L. Nerger, and H. Yang, 2017: Assimilating summer sea-ice concentration into a coupled ice-ocean model using a LSEIK filter. Annals of Glaciology, 56, 38–44, https://doi.org/10.3189/2015AoG69A740.
Yi, D., and H. J. Zwally, 2014: Arctic sea ice freeboard and thickness, version 1. [Available online from https://nsidc.org/data/NSIDC-0393/versions/1].
Zheng, F., and J. Zhu, 2008: Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. J. Geophys. Res., 113, C07002, https://doi.org/10.1029/2007JC004621.
Acknowledgements
The authors wish to thank two anonymous reviewers for their very helpful comments and suggestions. This work was supported by the National Key R&D Program of China (Grant No. 2016YFC1402705) the Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-DQC010), the National Natural Science Foundation of China (Grant Nos. 41876012 and 41861144015), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42000000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights
• An Arctic sea-ice simulation from 1992 to 2012 was performed to evaluate the model deficiencies in different seasons.
• The simulation uncertainties induced by atmospheric forcing and oceanic boundaries are different for reproducing the sea-ice extent in March and September.
• An effective way to isolate the roles of seasonally varying model errors is valuable for improving sea-ice simulation and prediction.
Electronic Supplementary Material
Rights and permissions
About this article
Cite this article
Zheng, F., Sun, Y., Yang, Q. et al. Evaluation of Arctic Sea-ice Cover and Thickness Simulated by MITgcm. Adv. Atmos. Sci. 38, 29–48 (2021). https://doi.org/10.1007/s00376-020-9223-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-020-9223-6