[go: up one dir, main page]

Skip to main content
Log in

Some Combinatorial Aspects of Constructing Bipartite-Graph Codes

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We propose geometrical methods for constructing square 01-matrices with the same number n of units in every row and column, and such that any two rows of the matrix contain at most one unit in common. These matrices are equivalent to n-regular bipartite graphs without 4-cycles, and therefore can be used for the construction of efficient bipartite-graph codes such that both the classes of its vertices are associated with local constraints. We significantly extend the region of parameters m, n for which there exist an n-regular bipartite graph with 2m vertices and without 4-cycles. In that way we essentially increase the region of lengths and rates of the corresponding bipartite-graph codes. Many new matrices are either circulant or consist of circulant submatrices: this provides code parity-check matrices consisting of circulant submatrices, and hence quasi-cyclic bipartite-graph codes with simple implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gallager R.G.: Low-Density Parity-Check Codes. MIT Press, Cambridge (1963)

    Google Scholar 

  2. Tanner R.M.: A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27, 533–547 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sipser M., Spielman D.: Expander codes. IEEE Trans. Inf. Theory 42, 1710–1722 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lentmaier M., Zigangirov K.S.: On generalized low-density parity-check codes based on Hamming component codes. IEEE Commun. Lett. 3, 248–260 (1999)

    Article  Google Scholar 

  5. Boutros, J., Pothier, O., Zémor, G.: Generalized low density (Tanner) codes. In: Proc. IEEE Int. Conf. Commun. (ICC), vol. 1. Vancouver, BC, Canada, pp. 441–445 (1999)

  6. Kou Y., Lin S., Fossorier M.P.C.: Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans. Inf. Theory 47, 2711–2736 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barg A., Zémor G.: Error exponents of expander codes. IEEE Trans. Inf. Theory 48, 1725–1729 (2002)

    Article  MATH  Google Scholar 

  8. Johnson S.J., Weller S.R.: Resolvable 2-designs for regular low-density parity-check codes. IEEE Trans. Commun. 51, 1413–1419 (2003)

    Article  Google Scholar 

  9. Weller S.R., Johnson S.J.: Regular low-density parity-check codes from oval designs. Eur. Trans. Telecommun. 14, 399–409 (2003)

    Google Scholar 

  10. Johnson, S.J., Weller, S.R.: High-rate LDPC codes from unital designs. In: Proc. IEEE Globecom Conf. San Francisco, CA, USA, pp. 150–152 (2003)

  11. Lin S., Costello D.J. Jr: Error Control Coding: Fundamental and Applications. 2nd edn. Prentice Hall, Upper Saddle River, NJ (2004)

    Google Scholar 

  12. Fossorier M.P.C.: Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory 50, 1788–1793 (2004)

    Article  MathSciNet  Google Scholar 

  13. Kim J.-L., Peled U.N., Perepelitsa I., Pless V., Friedland S.: Explicit construction of families of LDPC codes with no 4-cycles. IEEE Trans. Inf. Theory 50, 2378–2388 (2004)

    Article  MathSciNet  Google Scholar 

  14. Tanner R.M., Sridhara D., Sridharan A., Fuja T.E., Costello D.J. Jr: LDPC block and convolutional codes based on circulant matrices. IEEE Trans. Inf. Theory 50, 2966–2984 (2004)

    Article  MathSciNet  Google Scholar 

  15. Mellinger K.E.: LDPC codes from triangle-free line sets. Des. Codes Cryptogr. 32, 341–350 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tang H., Xu J., Lin S., Abdel-Ghaffar K.A.S.: Codes on finite geometries. IEEE Trans. Inf. Theory 51, 572–596 (2005)

    Article  MathSciNet  Google Scholar 

  17. Mellinger K.E., Mubayi D.: Constructions of bipartite graphs from finite geometries. J. Graph Theory 49, 1–10 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miladinović, N., Fossorier, M.: Generalized LDPC codes with Reed–Solomon and BCH codes as component codes for binary channels. In: Proc. IEEE Global Comm. Conf. (Globecom), vol. 3. St. Luis, MO, USA, pp. 6–10 (2005)

  19. Barg A., Zémor G.: Distances properties of expander codes. IEEE Trans. Inf. Theory 52, 78–90 (2006)

    Article  Google Scholar 

  20. Li Z.-W., Chen L., Zeng L., Lin S., Fong W.H.: Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Trans. Commun. 54, 71–81 (2006)

    Article  Google Scholar 

  21. Gabidulin, E., Moinian, A., Honary, B.: Generalized construction of quasi-cyclic regular LDPC codes based on permutation matrices. In: Proc. Int. Symp. Inf. Theory 2006, ISIT 2006. Seattle, USA, pp. 679–683 (2006)

  22. Høholdt, T., Justesen, J.: Graph codes with Reed–Solomon component codes. In: Proc. Int. Symp. Inf. Theory 2006, ISIT 2006. Seattle, USA, pp. 2022–2026 (2006)

  23. Gabidulin, E.M.: On LDPC matrices equivalent to Vandermonde matrices. In: Proc. X Int. Workshop Algebraic Comb. Coding Theory, ACCT 2006. Zvenigorod, Russia, pp. 97–101 (2006). http://dcn.infos.ru/acct/ACCT2006/papers/gabi.pdf

  24. Liva G., Song S., Lan L., Zhang Y., Lin S., Ryan W.E.: Design of LDPC codes: a survey and new results. J. Commun. Softw. Syst. 2, 191–211 (2006)

    Google Scholar 

  25. Droms S.V., Mellinger K.E., Meyer C.: LDPC codes generated by conics in the classical projective plane. Des. Codes Crypt. 40, 343–356 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu J., Chen L., Djurdjevic I., Abdel-Ghaffar K.: Construction of regular and irregular LDPC codes: geometry decomposition and masking. IEEE Trans. Inf. Theory 53, 121–134 (2007)

    Article  MathSciNet  Google Scholar 

  27. Lan L., Zeng L., Tai Y.Y., Chen L., Lin S., Abdel-Ghaffar K.: Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach. IEEE Trans. Inf. Theory 53, 2429–2458 (2007)

    Article  MathSciNet  Google Scholar 

  28. Afanassiev, V.B., Davydov, A.A., Zyablov, V.V.: Low density concatenated codes with Reed–Solomon component codes. In: Proc. XI Int. Symp. on Problems of Redundancy in Inf. and Control Syst. St.-Petersburg, Russia, pp. 47–51 (2007). http://k36.org/redundancy2007

  29. Mazumdar, A.: Analysis of bipartite graph codes on the binary erasure channel. In: Proc. 4–5 Annual Allerton Conf., UIUC. Illinois, USA, pp. 897–904 (2007)

  30. Kim J.-L., Mellinger K.E., Storme L.: Small weight codewords in LDPC codes defined by (dual) classical generalized quadrangles. Des. Codes Crypt. 42, 73–92 (2007)

    Article  MathSciNet  Google Scholar 

  31. Miladinović N., Fossorier M.P.C.: Generalized LDPC codes and generalized stopping sets. IEEE Trans. Commun. 56, 201–212 (2008)

    Article  Google Scholar 

  32. Zyablov, V., Johannesson, R., Lončar, M., Rybin, P.: On the error-correcting capabilities of low-complexity decoded LDPC codes with constituent Hamming codes. In: Proc. XI Int. Workshop Algebraic Comb. Coding Theory, ACCT2008. Pamporovo, Bulgaria, pp. 325–337 (2008). http://www.moi.math.bas.bg/acct2008/b54.pdf

  33. Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: Symmetric configurations for bipartite-graph codes. In: Proc. XI Int. Workshop Algebraic Comb. Coding Theory, ACCT2008. Pamporovo, Bulgaria, pp. 63–69 (2008). http://www.moi.math.bas.bg/acct2008/b11.pdf

  34. Pepe V., Storme L., Van de Voorde G.: Small weight codewords in the LDPC codes arising from linear representations of geometries. J. Combin. Des. 17, 1–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Afanassiev V.B., Davydov A.A., Zyablov V.V.: Low density parity check codes on bipartite graphs with Reed–Solomon constituent codes. Electron. J. Inf. Process. 9(4), 301–331 (2009)

    Google Scholar 

  36. Castleberry C., Hunsberger K., Mellinger K.E.: LDPC codes arising from hyperovals. Bull. Inst. Combin. Appl. 58, 59–72 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Pepe V., Storme L., Van de Voorde G.: On codewords in the dual code of classical generalised quadrangles and classical polar spaces. Discrete Math. 310, 3132–3148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hirschfeld J.W.P.: Projective Geometries over Finite Fields. 2nd edn. Oxford Science, Oxford (1998)

    MATH  Google Scholar 

  39. Colbourn, C.J., Dinitz, J. (eds.): The CRC Handbook of Combinatorial Designs. 2nd edn. CRC Press, Boca Raton (2006)

    Google Scholar 

  40. Gropp H.: On the existence and non-existence of configurations n k . J. Combin. Inform. System Sci. 15, 34–48 (1990)

    MathSciNet  MATH  Google Scholar 

  41. Gropp, H.: Non-symmetric configurations with deficiencies 1 and 2. In: Combinatorics 90, Ann. Discrete Math., vol 52, pp. 227–239 (1992)

  42. Funk M., Labbate D., Napolitano V.: Tactical (de-)compositions of symmetric configurations. Discret. Math. 309, 741–747 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Abreu M., Funk M., Labbate D., Napolitano V.: On (minimal) regular graphs of girth 6. Australas. J. Combin. 35, 119–132 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Gács A., Héger T.: On geometric constructions of (k, g)-graphs. Contrib. Discr. Math. 3, 63–80 (2008)

    MATH  Google Scholar 

  45. Dembowski P.: Finite Geometries. Springer, Berlin (1968)

    Book  MATH  Google Scholar 

  46. Hamilton N., Penttila T.: Sets of type (a, b) from subgroups of Γ L(1, p R). J. Algebraic Combin. 13, 67–76 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Coykendall J., Dover J.: Sets with few intersection numbers from Singer subgroup orbits. Eur. J. Combin. 22, 455–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: New inductive constructions of complete caps in PG(N, q), q even. J. Comb. Des. 18, 176–201 (2010)

    MathSciNet  Google Scholar 

  49. Giulietti M.: Small complete caps in PG(N, q), q even. J. Comb. Des. 15, 420–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: On sharply transitive sets in PG(2, q). Innov. Incid. Geom. 6(7), 139–151 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Davydov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davydov, A.A., Giulietti, M., Marcugini, S. et al. Some Combinatorial Aspects of Constructing Bipartite-Graph Codes. Graphs and Combinatorics 29, 187–212 (2013). https://doi.org/10.1007/s00373-011-1103-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-011-1103-5

Keywords

Mathematics Subject Classification (2010)

Navigation