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Abstract. We propose geometrical methods for constructing square 01-matrices
with the same number n of units in every row and column, and such that any
two rows of the matrix have at most one unit in the same position. In terms of
Design Theory, such a matrix is an incidence matrix of a symmetric configuration.
Also, it gives rise to an n-regular bipartite graphs without 4-cycles, which can be
used for constructing bipartite-graph codes so that both the classes of their vertices
are associated with local constraints (constituent codes). We essentially extend the
region of parameters of such matrices by using some results from Galois Geometries.
Many new matrices are either circulant or consist of circulant submatrices: this
provides code parity-check matrices consisting of circulant submatrices, and hence
quasi-cyclic bipartite-graph codes with simple implementation.

1 Introduction

Bipartite-graph codes are studied in the context of low-density parity check
(LDPC) codes, see [1],[2],[4],[6]-[8], and the references therein.

In [7] Tanner proposed to associate a bipartite graph T to an [N,K] code C
in the following way. Fix a positive integer U , and for any i = 1, . . . , U choose
a set of ni distinct positions of codewords of C, that is a subset j1, . . . , jni of
{1, . . . , N}. One class of vertices {V ′

1 , . . . , V
′
N} of T correspond to the positions

of the codewords of C. Let {V ′′
1 , V ′′

2 , . . . , V ′′
U } be the other class. A vertex V ′′

i has
degree ni and is adjacent with V ′

j1
, . . . , V ′

jni
. The [ni, ki] subcode Ci obtained

from C by projection to the positions corresponding to j1, . . . , jni is called a
local constraint on variables, while the vertices V ′

1 , . . . , V
′
N are said to be the

variable vertices of T . If ni − ki = 1 holds for all subcodes Ci, one can build
the graph T directly using the U × N parity-check matrix H of the code C :
the jth column (ith row) of H is identified with a vertex V ′

j (V ′′
i ) and every
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nonzero entry into H implies an edge of T . Usually, such variant of T is called
the Tanner graph of the code C [8].

We consider the following modification of the construction of [7] , see [2],[1].
Let G be an n-regular bipartite graph with two classes of vertices {V1, . . . , Vm}
and {Vm+1, . . . , V2m} (i.e. any vertex is adjacent to exactly n vertices, but
any two vertices from the same class are not adjacent). Let Ct be an [n, kt]
constituent code, t = 1, 2, . . . , 2m. A bipartite-graph code C = C(G; C1, . . . , C2m)
is a linear [N, K] code with length equal to the number of edges of G, that is
N = mn. Coordinates of C are in one-to-one correspondence with the edges of
G. In addition, the projection of a codeword of C to the positions corresponding
to the n edges incident to the vertex Vt must be a codeword of the constituent
code Ct. We call G a supporting graph of the bipartite-graph code C.

To a supporting graph G it can be naturally associated a square 01-matrix
M(m,n) of order m with n units in every row and column. The ith row (jth
column) of M(m,n) corresponds to the vertex Vi (Vm+j). The entry in position
(i, j) is 1 if and only if Vi and Vm+j are adjacent. It is easily seen that the
graph G is 4-cycle free if and only if the matrix M(m,n) does not contain the
2 × 2 submatrix J4 consisting of all units. A matrix without submatrix J4 is
called a J4-free matrix.

In order to improve the performance of the code, it is desirable to increase
the girth of the graph [7],[8]. We study supporting graphs with girth at least
six (i.e. with no 4-cycles). It should be noted that if the supporting graph of a
bipartite-graph code has girth at least six, then the girth of the Tanner graph
of this code is at least ten.

Parameters of the bipartite-graph codes depend on the values of m and n.
The goal of this work is to construct J4-free matrices M(m,n) with distinct
parameters m,n.

J4-free matrices for LDPC codes are considered in many papers, see e.g.
[1],[4],[8] and the references therein. Mainly, non-square matrices are inves-
tigated. It is also known that both symmetric and resolvable non-symmetric
2-(v, k, 1) designs [3] can be used for obtaining J4-free matrices M(v, k). The
reason is that in a 2-(v, k, 1) design every pair of elements is contained in ex-
actly one block. Actually, in order to obtain a J4 -free matrix M(m,n) it is
enough that every pair of elements is contained in at most one block. An inci-
dence structure with this property is said to be a configuration [3, Sec. IV.6].
If a configuration is symmetric, then its incidence matrix is a J4 -free matrix
M(m,n).

Even though J4-free matrices M(m,n) have already been studied in litera-
ture, the region of parameters of the constructed matrices is not wide enough
if compared to the permanently growing needs of practice, when often exact
values of m,n are necessary. Also, it should be considered that distinct con-
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structions of matrices have distinct properties, and clearly some choice can be
useful.

In this work we propose a number of constructions of both square and
non-square J4-free matrices based on incidence structures in projective spaces
PG(v, q) over Galois fields Fq (see [3],[5] for basic facts on Galois Geometries).

We essentially extend the region of parameters of J4-free square 01-matrices
with the same number of units in every row and column. The obtained matrices
have new structures that gives wide choice for code implementation. Many of
them either are circulant or consist of circulant submatrices: this provides
code parity-check matrices consisting of circulant submatrices which give rise
to quasi-cyclic (QC) bipartite-graph codes. QC codes can be encoded with
complexity linearly proportional to code length [4],[6].

2 Construction A: a single orbit of a collineation
group

Construction A. Take any point orbit P under the action of a collineation
group in an affine or projective space of order q. Choose an integer n ≤ q + 1
such that the set L(P, n) of lines meeting P in precisely n points is not empty.
Define the following incidence structure: the points are the points of P, the
lines are the lines of L(P, n), the incidence is that of the starting space. Let M
be the incidence matrix of such a structure.

Theorem 1 In Construction A the number of lines of L(P, n) through a point
of P is a constant rn. If n = rn, the matrix M in Construction A is a J4-free
matrix M(|P|, n).

Example 2 i) We consider a conic K in PG(2, q), q odd [5, Sec. 8.2]. Let P
be the set of 1

2q(q−1) internal points to K. It is an orbit under the collineation
group GK fixing the conic. Let n = 1

2(q + 1). Then L(P, n) is the set of lines
external to K. We obtain

M(m,n) : m = 1
2q(q − 1), n = 1

2(q + 1), q odd.

Another orbit P2 of the group GK is the set of 1
2q(q + 1) external points to K.

We form the set L(P2,
1
2(q−1)) from 1

2q(q+1) bisecants. As a result, we obtain
a matrix

M(m,n) : m = 1
2q(q + 1), n = 1

2(q − 1), q odd.
ii) Let P be the complement of a Baer subplane π of PG(2, q), q a square.

It is an orbit of the collineation group fixing π. The set L(P, q) is the set of
tangents to π. We obtain

M(m,n) : m = q2 −√q, n = q, q square.
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iii) In PG(2, q), q a square, let P be the complement of the Hermitian curve
[5, Sec. 7.3]. It is an orbit of the group PGU(3, q) fixing the point (0, 0, 1). We
obtain

M(m,n) : m = q2 + q − q
√

q, n = q −√q, q square.

It should be noted that Construction A works for any 2-(v, k, 1) design D
and for any group of automorphisms of D. The role of q + 1 is played by the
size of any block in D.

3 Construction B: an union of orbits of a Singer sub-
group

We treat points of PG(2, q) as nonzero elements of Fq3 . Elements a, b of Fq3

correspond to the same point if and only if a = xb, x ∈ Fq. Let α be a primitive
element of Fq3 . The point represented by αi is denoted by Pi. Then PG(2, q) =
{P0, P1, . . . , Pq2+q}. The map σ : Pi 7→ Pi+1 (mod q2+q+1) is a projectivity of
PG(2, q). The group S of order q2 + q + 1 generated by σ is called the Singer
group of PG(2, q) [5, Sec. 4.2]. Clearly, Pi = σi(P0).

For any divisor d of q2 + q + 1, the group S has a unique cyclic subgroup
Ŝd of order d, namely the group generated by σt, t = (q2 + q + 1)/d. It is well
known that under the action of a cyclic collineation group the point set and the
line set of a projective plane have the same cyclic structure.

Let O0, O1, . . . , Ot−1 be the orbits of points of PG(2, q) under the action
of the subgroup Ŝd. Clearly, |Oi| = d. We arrange indexes so that P0 ∈ O0,
Ov = σv(O0). Then

Oi = {Pi, σ
t(Pi), σ2t(Pi), . . . , σ(d−1)t(Pi)}, i = 0, 1, . . . , t− 1. (1)

Let `0 be a fixed line of PG(2, q) and let `i = σi(`0). Then the set of lines of
PG(2, q) is L = {`0, `1, `2, . . . , `q2+q}. Let L0, . . . , Lt−1 be the orbits of the set
L under the action of Ŝd. Clearly, |Li| = d. We arrange indexes in such a way
that `0 ∈ L0, Lv = σv(L0). Then

Li = {`i, σ
t(`i), σ2t(`i), . . . , σ(d−1)t(`i)}, i = 0, 1, . . . , t− 1. (2)

Theorem 3 Let t = (q2 +q+1)/d and let O0, . . . , Ot−1 (resp. L0, . . . , Lt−1) be
the point (resp. line) orbits under the action of the Singer subgroup Ŝd of order
d. Assume that for points, lines, and orbits, indexes are arranged as in (1) and
(2). Then for any i and j, every line of the orbit Li meets the orbit Oj in the
same number of points wj−i (mod t), where wu = |`0 ∩Ou|, u = 0, 1, . . . , t− 1.
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Corollary 4 Let d and t be as in Theorem 3. The J4-free incidence (q2 + q +
1)× (q2 + q + 1) matrix V of the plane PG(2, q) can be represented as follows:

V =




C0,0 C0,1 C0,2 . . . C0,t−1
C1,0 C1,1 C1,2 . . . C1,t−1

...
...

...
...

...
Ct−1,0 Ct−1,1 Ct−1,2 . . . Ct−1,t−1




where Ci,j is a J4-free binary circulant d× d matrix of weight wj−i (mod t).
Weights wu of the submatrices Ci,j can be written as the circulant t × t

matrix

W (V ) =




w0 w1 w2 w3 . . . wt−2 wt−1
wt−1 w0 w1 w2 . . . wt−3 wt−2

...
...

...
...

...
...

...
w1 w2 w3 w4 . . . wt−1 w0


 .

Remark 5 We use in the sequel the following natural decomposition of square
circulant 01-matrices, cf. [8, Sec. IV, B]. From now on, we assume that in
circulant matrices rows are shifted to the right. A binary circulant d×d matrix
C of weight w is defined by the vector s(C) = (s1, s2, . . . , sw) where the si ’s
are the positions of the units in the first row of C, arranged in such a way that
s1 < s2 < . . . < sw. Let Id = Id(0) be the identity matrix of order d and let
Id(v) be the circulant permutation d× d matrix obtained from Id by shifting of
every row by v positions. The matrix C can be treated as the superposition of
w matrices Id(si), i = 1, . . . , w. From the matrix C one can obtain a circulant
matrix C(δ) of weight w−δ using the superposition of any w−δ distinct matrices
Id(si). It should also be noted that if the starting matrix C is J4 -free then any
matrix C(δ) is J4-free too.

Construction B. Fix some integers u1, . . . , ur, 0 ≤ ui ≤ t− 1. Let V ′ be a
matrix obtained from V by replacing the circulant submatrices Ci,j such that

j − i = uk (mod t) with d × d matrices C
(δuk

)

i,j as in Remark 5. Here, and in
the rest of the paper, the subscript difference j − i is calculated modulo t. Let
W (V ′) be the matrix W (V ) in which corresponding elements wj−i are changed
by w′j−i = wj−i − δj−i. If an m

d × m
d submatrix of W (V ′) is such that the sum

of elements of every row and every column is equal to the same number n, then
the corresponding submatrix of V ′ is a J4-free matrix M(m, n).

Example 6 The matrix C
(δ)
i,j , obtained from the submatrix Ci,j of V as in Re-

mark 5, is a circulant matrix M(d,wj−i−δ). So, we can form a family of J4-free
circulant matrices.

M(m,n) : m = d, n = wu − δ, u = 0, 1, . . . , t− 1, δ = 0, 1 . . . , wu − 1. (3)
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Example 7 By Remark 5, from the matrix V several families of J4-free ma-
trices M(m,n) can be obtained. Significantly, every such matrix consists of
circulant submatrices. Sometimes some conditions on weights w′u of submatri-
ces C

(δj−i)
i,j are needed. Here, we provide a list of parameters m,n of some of

these families of J4-free matrices M(m,n).
i) m = q2 + q +1, n =

∑t−1
u=0(wu− δu) = q +1−∑t−1

u=0 δu, δu = 0, 1 . . . , wu.

ii) m = cd, n = (c− h)w, c = 1, 2, . . . ,
⌈

k
2

⌉
, h = 0, 1, . . . , c− 1.

(for w′0 = w′1 = . . . = w′k−1 = w, k ≥ 2 );

iii) m = cd, n = w0 − δ0 + (c − h)w, δ0 = 0, 1, . . . , w0, c = 2, 3, . . . , t − 1,
h = 1, . . . , c.

(for w′0 = w0 − δ0 6= w, w′1 = . . . = w′t−1 = w );

iv) m = 2d, n = 2w

(for w′i = w′i+m = w′i+m+k = w′i+2m+k = w, k ≥ 1, m ≥ 1);

v) m = (k + 1)d, n = w′0 + w′1 + ... + w′k.

(for w′k+1 = w′0, w′k+2 = w′1, . . . , w
′
2k = w′k−1, k ≥ 1).

Remark 8 Assume that M(m,n) is a circulant matrix, see e.g. Example 6.
Let M(m,n) be defined by the vector s(M(m,n)) = (s1, s2, . . . , sn), see Remark
5. We consider M(m,n) as a superposition of n circulant permutation m×m
matrices Im(si), i = 1, . . . , n. Assume that for constituent [n, kt] codes Ct we
have C1 = . . . = Cm, Cm+1 = . . . = C2m. Let rt = n−kt. Let also [c(t)

j,1c
(t)
j,2 . . . c

(t)
j,rt

]
be the jth column of a parity check matrix Ht of the q-ary code Ct. Finally,
let H1 = . . . = Hm, Hm+1 = . . . = H2m. Then the parity check matrix H
corresponding to the code associated to the matrix M(m,n) has the form

H =




c
(1)
1,1Im c

(1)
2,1Im . . . c

(1)
n,1Im

...
...

...
...

c
(1)
1,r1

Im c
(1)
2,r1

Im . . . c
(1)
n,r1Im

c
(m+1)
1,1 Im(s1) c

(m+1)
2,1 Im(s2) . . . c

(m+1)
n,1 Im(sn)

...
...

...
...

c
(m+1)
1,rm+1

Im(s1) c
(m+1)
2,rm+1

Im(s2) . . . c
(m+1)
n,rm+1Im(sn)




.

The matrix H consists of circulant submatrices, and therefore it defines a QC
code, cf. [4],[8]. QC codes can be implemented with relatively small complexity
[6].
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