Abstract
We consider the equation
that includes the short pulse, the Ostrovsky–Hunter, and the Korteweg–deVries ones. We consider here the asymptotic behavior as \({\gamma\to 0}\) . The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L p setting.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Brunelli J.C.: The short pulse hierarchy. J. Math. Phys. 46, 123507 (2005)
Coclite, G.M., di Ruvo, L.: Wellposedness of bounded solutions of the non-homogeneous initial boundary value problem for the Ostrovsky–Hunter equation. J. Hyperbolic Differ. Equ. 12, 221–248 (2015)
Coclite, G.M.; di Ruvo, L.: Wellposedness results for the short pulse equation. Z. Angew. Math. Phys. (2014) (To appear on)
Coclite G.M., di Ruvo L.: Oleinik type estimates for the Ostrovsky–Hunter equation. J. Math. Anal. Appl. 423, 162–190 (2015)
Coclite G.M., Ruvo L.: Convergence of the Ostrovsky equation to the Ostrovsky–Hunter one. J. Differ. Equations 256, 3245–3277 (2014)
Coclite, G.M., di Ruvo, L.: Convergence of the regularized short pulse equation to the short pulse one. (Submitted)
Coclite, G.M., di Ruvo, L., Karlsen, K.H.: Some wellposedness results for the Ostrovsky–Hunter equation. In: Hyperbolic Conservation Laws and Related Analysis with Applications, 143–159. Springer Proc. Math. Stat., vol. 49. Springer, Heidelberg (2014)
Costanzino N., Manukian V., Jones C.K.R.T.: Solitary waves of the regularized short pulse and Ostrovsky equations. SIAM J. Math. Anal 41, 2088–2106 (2009)
di Ruvo, L.: Discontinuous solutions for the Ostrovsky–Hunter equation and two phase flows. Phd Thesis, University of Bari (2013). http://www.dm.uniba.it/home/dottorato/dottorato/tesi/
Gui G., Liu Y.: On the Cauchy problem for the Ostrovsky equation with positive dispersion. Commun. Partial Differ. Equ. 32(10–12), 1895–1916 (2007)
Grimshaw R.H.J.: Adjustment processes and radiating solitary waves in a regularised Ostrovsky equation. Three-dimensional aspects of air–sea interaction. Eur. J. Mech. B Fluids 18(3), 535–543 (1999)
Hunter, J.: Numerical solutions of some nonlinear dispersive wave equations. In: Computational Solution of Nonlinear Systems of Equations (Fort Collins, CO, 1988) Lectures in Appl. Math., vol. 26, pp. 301–316. Amer. Math. Soc., Providence (1990)
Hunter, J., Tan, K.P.: Weakly dispersive short waves. In: Proceedings of the IVth International Congress on Waves and Stability in Continuous Media, Sicily (1987)
LeFloch, P.G., Natalini, R.: Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal. Ser. A Theory Methods 36(2), 212–230 (1992)
Levandosky S., Liu Y.: Stability of solitary waves of a generalized Ostrovsky equation. SIAM J. Math. Anal. 38(3), 985–1011 (2006)
Levandosky S., Liu Y.: Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete Contin. Dyn. Syst. B 7(7), 793–806 (2007)
Linares F., Milanes A.: Local and global well-posedness for the Ostrovsky equation. J. Differ. Equ. 222(2), 325–340 (2006)
Liu Y.: On the stability of solitary waves for the Ostrovsky equation. Q. Appl. Math. 65(3), 571–589 (2007)
Liu Y., Pelinovsky D., Sakovich A.: Wave breaking in the Ostrovsky–Hunter equation. SIAM J. Math. Anal. 42(5), 1967–1985 (2010)
Liu Y., Varlamov V.: Cauchy problem for the Ostrovsky equation. Discrete Contin. Dyn. Syst. 10(3), 731–753 (2004)
Liu Y., Varlamov V.: Stability of solitary waves and weak rotation limit for the Ostrovsky equation. J. Differ. Equ. 203(1), 159–183 (2004)
Morrison A.J., Parkes E.J., Vakhnenko V.O.: The N loop soliton solutions of the Vakhnenko equation. Nonlinearity 12(5), 1427–1437 (1999)
Murat F.: L’injection du cône positif de H −1 dans W −1, q est compacte pour tout q < 2. J. Math. Pures Appl. (9) 60(3), 309–322 (1981)
Ostrovsky L.A.: Nonlinear internal waves in a rotating ocean. Okeanologia 18, 181–191 (1978)
Parkes E.J.: Explicit solutions of the reduced Ostrovsky equation. Chaos Solitons Fractals 31(3), 602–610 (2007)
Parkes E.J., Vakhnenko V.O.: The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. Chaos Solitons Fractals 13(9), 1819–1826 (2002)
Sakovich A., Sakovich S.: The short pulse equation is integrable. J. Phys. Soc. Jpn. 74, 239–241 (2005)
Schäfer T., Wayne C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196, 90–105 (2004)
Schonbek M.E.: Convergence of solutions to nonlinear dispersive equations. Commun. Partial Differ. Equ. 7(8), 959–1000 (1982)
Stepanyants Y.A.: On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons. Chaos Solitons Fractals 28(1), 193–204 (2006)
Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV, pp. 136–212. Pitman, Boston (1979)
Tsugawa K.: Well-posedness and weak rotation limit for the Ostrovsky equation. J. Differ. Equ. 247(12), 3163–3180 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
Rights and permissions
About this article
Cite this article
Coclite, G.M., di Ruvo, L. Dispersive and diffusive limits for Ostrovsky–Hunter type equations. Nonlinear Differ. Equ. Appl. 22, 1733–1763 (2015). https://doi.org/10.1007/s00030-015-0342-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00030-015-0342-1