[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Does Flexibility Facilitate Sustainability of Cooperation Over Time? A Case Study from Environmental Economics

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper we present nonlinear incentive strategies that can be applied to a class of differential games that are frequently used in the literature, in particular, in environmental economics literature. We consider a class of nonlinear incentive functions that depend on the control variables of both players and on the current value of the state variable. The strategies are constructed to allow some flexibility in the sense that, unlike the common literature on the subject, the optimal state path evolves close to the cooperative trajectory. As a consequence of this flexibility, the incentive equilibrium is credible in a larger region than the one associated with the usual linear incentive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Ehtamo and Hämäläinen [19, p. 674] already pointed out the interest of considering state-dependent equilibrium strategies instead of decision-dependent equilibrium strategies. Jørgensen and Zaccour [23, p. 818] stated that in the incentive equilibrium the application of state-dependent strategies may be more complicated and may be a promising area for future research.

  2. We thank an anonymous reviewer for bringing this point to our attention.

References

  1. Haurie, A.: A note on nonzero-sum differential games with bargaining solution. J. Optim. Theory Appl. 18, 31–39 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Petrosjan, L.A.: Agreeable solutions in differential games. Int. J. Math. Game Theory Algebr. 7, 165–177 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Petrosjan, L.A., Zaccour, G.: Time-consistent shapley value allocation of pollution cost control. J. Econ. Dyn. Control 27, 381–398 (2003)

  4. Petrosjan, L.A., Zenkevich, N.A.: Game Theory. World Scientific, Singapore (1996)

    Book  Google Scholar 

  5. Jørgensen, S., Zaccour, G.: Time consistent side payments in a dynamic game of downstream pollution. J. Econ. Dyn. Control 25, 1973–1987 (2001)

    Article  Google Scholar 

  6. Jørgensen, S., Zaccour, G.: Time consistency in cooperative differential games. In: Zaccour, G. (ed.) Decision and Control in Management Science (in Honor of Alain Haurie), pp. 349–366. Kluwer Academic Publishers, Dordrecht (2002)

    Chapter  Google Scholar 

  7. Kaitala, V., Pohjola, M.: Economic development and agreeable redistribution in capitalism: efficient game equilibria in a two-class neoclassical growth model. Int. Econ. Rev. 31, 421–437 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kaitala, V., Pohjola, M.: Sustainable international agreements on greenhouse warming: a game theory study. In: Carraro, C., Filar, J.A. (eds.) Annals of the International Society of Dynamic Games, vol. 2, pp. 67–87. Birkhäuser, Boston (1995)

    Google Scholar 

  9. Jørgensen, S., Martín-Herrán, G., Zaccour, G.: Agreeability and time-consistency in linear-state differential games. J. Optim. Theory Appl. 119, 49–63 (2003)

    Article  MathSciNet  Google Scholar 

  10. Jørgensen, S., Martín-Herrán, G., Zaccour, G.: Sustainability of cooperation overtime in linear–quadratic differential games. Int. Game Theory Rev. 7, 395–406 (2005)

    Article  MathSciNet  Google Scholar 

  11. Chiarella, C., Kemp, M.C., Long, N.V.: On the economics of international fisheries. Int. Econ. Rev. 25, 85–92 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rincón-Zapatero, J.P., Martín-Herrán, G., Martínez, J.: Identification of efficient subgame-perfect Nash equilibria in a class of differential games. J. Optim. Theory Appl. 104, 235–242 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Martín-Herrán, G., Rincón-Zapatero, J.P.: Efficient Markov perfect Nash equilibria: theory and application to dynamic fishery games. J. Econ. Dyn. Control 29, 1073–1096 (2005)

  14. Haurie, A., Pohjola, M.: Efficient equilibria in a differential game of capitalism. J. Econ. Dyn. Control 11, 65–78 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tolwinski, B., Haurie, A., Leitmann, G.: Cooperative equilibria in differential games. J. Math. Anal. Appl. 119, 192–202 (1986)

    Article  MathSciNet  Google Scholar 

  16. Dockner, E.J., Jørgensen, S., Long, N.V., Sorger, G.: Differential Games in Economics and Management Science. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  17. Ehtamo, H., Hämäläinen, R.P.: On affine incentives for dynamic decision problems. In: Basar, T. (ed.) Dynamic Games and Applications in Economics, pp. 47–63. Springer-Verlag, Berlin (1986)

    Chapter  Google Scholar 

  18. Ehtamo, H., Hämäläinen, R.P.: Incentive strategies and equilibria for dynamic games with delayed information. J. Optim. Theory Appl. 63, 355–369 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ehtamo, H., Hämäläinen, R.P.: Cooperative incentive equilibrium for a resource management problem. J. Optim. Theory Appl. 17, 659–678 (1993)

    MATH  Google Scholar 

  20. Ehtamo, H., Hämäläinen, R.P.: Credibility of linear equilibrium strategies in a discrete time fishery management game. Group Decis. Negot. 4, 27–37 (1995)

    Article  Google Scholar 

  21. Martín-Herrán, G., Zaccour, G.: Credibility of incentive equilibrium strategies in linear-state differential games. J. Optim. Theory Appl. 126, 1–23 (2005)

    Article  MathSciNet  Google Scholar 

  22. Martín-Herrán, G., Zaccour, G.: Credible linear incentive equilibrium strategies in linear–quadratic differential games. In: Bernhard, P., Gaitsgory, V., Pourtallier, O. (eds.) Annals of the International Society of Dynamic Games, vol. 10, pp. 261–291. Birkhäuser, Boston (2009)

    Google Scholar 

  23. Jørgensen, S., Zaccour, G.: Channel coordination over time: incentive equilibria and credibility. J. Econ. Dyn. Control 27, 801–822 (2003)

  24. Dockner, E.J., Long, N.V.: International pollution control: cooperative versus noncooperative strategies. J. Environ. Econ. Manag. 25, 13–29 (1993)

    Article  MATH  Google Scholar 

  25. Martín-Herrán, G., Taboubi, S.: Incentive strategies for shelf-space allocation in duopolies. In: Haurie, A., Zaccour, G. (eds.) Dynamic Games: Theory and Applications, GERAD 25th Aniversary Series, pp. 231–253. Springer, New York (2005)

    Chapter  Google Scholar 

  26. Jørgensen, S., Taboubi, S., Zaccour, G.: Incentives for retailer promotion in a marketing channel. In: Haurie, A., Muto, S., Petrosjan, L.A., Raghavan, T.E.S. (eds.) Annals of the International Society of Dynamic Games, vol. 8, pp. 365–378. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  27. Buratto, A., Zaccour, G.: Coordination of advertising strategies in a fashion licensing contract. J. Optim. Theory Appl. 142, 31–53 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jørgensen, S., Zaccour, G.: Incentive equilibrium strategies and welfare allocation in a dynamic game of pollution control. Automatica 37, 29–36 (2001)

    Article  Google Scholar 

  29. Breton, M., Sokri, A., Zaccour, G.: Incentive equilibrium in an overlapping-generations environmental game. Eur. J. Oper. Res. 185, 687–699 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Behrens, D.A., Caulkins, J.P., Feichtinger, G., Tragler, G.: Incentive Stackelberg strategies for a dynamic game on terrorism. In: Jørgensen, S., Quincampoix, M., Thomas, V.L. (eds.) Annals of the International Society of Dynamic Games, vol. 9, pp. 459–486. Birkhäuser, Boston (2007)

  31. Van der Ploeg, F., De Zeeuw, A.J.: International aspects of pollution control. Environ. Resour. Econ. 2, 117–139 (1992)

    Article  Google Scholar 

  32. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17, 238–246 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  33. Fritsch, F.N., Butland, J.: A method for constructing local monotone piecewise cubic interpolants. SIAM J. Sci. Stat. Comput. 5, 300–304 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research has been supported by Spanish MINECO, Projects ECO2008-01551, ECO2011-24352 and MTM2010-14919 (cofinanced by FEDER funds) and by COST Action IS1104, ”The EU in the new economic complex geography: models, tools and policy evaluation”. The authors thank four anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiomar Martín-Herrán.

Appendix: The Numerical Method

Appendix: The Numerical Method

We discretize problem (5), with the incentive functions \(\psi _i\), \(i=1,2\), defined in (7), by considering a time-discrete problem. To this end, let \(h>0\) be a positive parameter. We introduce the time steps \(t_n=nh\), with \(n\in \mathbb {N}\) a positive integer. We will use the notation \(\bar{u}_{i}\) to represent a sequence of real numbers \(\{u_{i,n}\}_{n=0}^\infty \) with \(u_{i,n}\in \mathbb {U}_i\) for all \(n\in \mathbb {N}\). The set of such sequences is represented by \(\overline{\fancyscript{U}}_i\).

We consider the time discrete, infinite horizon, pair of problems

$$\begin{aligned} \max _{\bar{u}_{i}\in \overline{\fancyscript{U}}_i} W_{h,i}(\bar{u}_{i},\bar{u}_{j}^{*\xi })&=\sum _{n=1}^\infty \delta ^\mathrm{{N}} \left[ u_{i,n}\left( A_i-\frac{1}{2}u_{i,n}\right) -\frac{1}{2}\varphi _{i}x_n^{2}\right] ,\\ \text {s.t.: } x_{n+1}&=x_n+h\bigl (\beta (u_{i,n}+\psi _j^\xi (u_{i,n},u_{j,n}^{*\xi },x_n))-\alpha x_n\bigr ),\nonumber \end{aligned}$$
(16)

where \(x_0\) is the initial condition in (5), \(\delta =1-\rho h\) and where superscript \(\xi \) is used to denote \(s\) or \(ns\) depending on the particular realization at hand. For simplicity, we have omitted the time variable in \(\psi _i^\mathrm{{ns}}\). It is assumed that the equilibrium condition

$$\begin{aligned} u_{i,n}^{*\xi }=\psi _i^\xi (u_{i,n}^{*\xi },u_{j,n}^{*\xi },x_n^*),\quad i,j=1,2,\ n\ge 0, \end{aligned}$$

is satisfied. We are using the notation \(\bar{u}_{i}^{*\xi }:=\arg \max _{\bar{u}_{i}}W_{h,i}(\bar{u}_{i},\bar{u}_{j}^{*\xi })\), \(i=1,2\).

Let us observe that the discrete problem (16) corresponds to a discretization of the functional in (5) by means of the rectangle rule with a forward Euler discretization of the dynamics in (5).

The discrete optimal incentive equilibrium trajectory starting in \(x_0^*=x_0\) is computed with the sequence

$$\begin{aligned} x_{n+1}^*=x_n^*+h\bigl (\beta (u_{i,n}^{*\xi }+u_{j,n}^{*\xi })-\alpha x_n^*\bigr ),\quad n\ge 0. \end{aligned}$$
(17)

In the case of the stationary incentive, the (time discrete) value function for problem (16) is defined by the system of Bellman equations

$$\begin{aligned} V_{h,i}^\mathrm{{s}}(x)=\max _{u_i\in \mathbb {U}_i}\left\{ hf_i(x,u_i,u_j^{*\mathrm{{s}}}) +\delta V_{h,i}^\mathrm{{s}}\left( x+hg_i^\mathrm{{s}}(x,u_i,u_j^{*\mathrm{{s}}})\right) \right\} , \end{aligned}$$
(18)

where \(i,j=1,2\), \(i\ne j\). The optimal feedback is defined as

$$\begin{aligned} u_i^{*\mathrm{{s}}}(x)=\arg \max _{u_i\in \mathbb {U}_i}\left\{ hf_i(x,u_i,u_j^{*\mathrm{{s}}}) +\delta V_{h,i}^\mathrm{{s}}\left( x+hg_i^\mathrm{{s}}(x,u_i,u_j^{*\mathrm{{s}}})\right) \right\} , \end{aligned}$$

and \(f_i(x,u_i,u_j^{*\mathrm{{s}}})\) and \(g_i^\mathrm{{s}}(x,u_i,u_j^{*\mathrm{{s}}})\) are given by (4) and (10).

The solution of the system of Eq. (18) is approximated using a collocation method based on shape preserving piecewise cubic Hermite interpolation introduced in [32, 33]. More precisely, let us introduce a grid of points \(0=z_0<z_1<\cdots <z_M=X\) for some fixed \(X>0\) that is big enough. We define \(\Delta _k=z_{k+1}-z_k\). The approximation \(V_{h,M,i}^\mathrm{{s}}\) to \(V_{h,i}^\mathrm{{s}}\), can be written for \(x\in [z_k,z_{k+1}]\) as

$$\begin{aligned} V_{h,M,i}^\mathrm{{s}}(x)&= F_k\Phi \bigl (\frac{z_{k+1}-x}{\Delta _k}\bigr ) +F_{k+1}\Phi \bigl (\frac{x-z_k}{\Delta _k}\bigr ) -D_k \Delta _k\Psi \bigl (\frac{z_{k+1}-x}{\Delta _k}\bigr )\\&+\,D_{k+1}\Delta _k\Psi \bigl (\frac{x-z_k}{\Delta _k}\bigr ), \end{aligned}$$

where \(\Phi (z)=3z^2-2z^3\) and \(\Psi (z)=z^3-z^2\). Note that the coefficients \(F_k\) and \(D_k\), are defined as \(F_k=V_{h,M,i}^\mathrm{{s}}(z_k)\) and \(D_k=\frac{\mathrm {d}}{\mathrm {d}x}V_{h,M,i}^\mathrm{{s}}(z_k)\), \(k=0,1,\ldots ,M\). The values of the slopes \(D_k\) are chosen as in [33]. This choice guarantees that \(V_{h,M,i}^\mathrm{{s}}(x)\) is locally monotone if the data \(F_k\) are locally monotone (see [32, 33]). The interpolant \(V_{h,M,i}^\mathrm{{s}}(x)\) possesses continuous first-order derivatives in \([0,z_M]\). The second derivative is not necessarily continuous.

The piecewise cubic approximation \(V_{h,M,i}^\mathrm{{s}}(x)\) is computed by a fixed-point iteration solving, for \(r\ge 0\),

$$\begin{aligned} V_{h,M,i}^{\mathrm{{s}},[r+1]}(z_k)= \max _{u_i\in \mathbb {U}_i}\bigl \{ hf_i(z_k,u_i,u_{j,k}^{[r]}) +\delta V_{h,M,i}^{\mathrm{{s}},[r]}\left( z_k+hg_i^\mathrm{{s}}(z_k,u_i,u_{j,k}^{[r]})\right) \bigr \}, \end{aligned}$$
(19)

and

$$\begin{aligned} u_{i,k}^{[r+1]}=\arg \max _{u_i\in \mathbb {U}_i}\bigl \{ hf_i(z_k,u_i,u_{j,k}^{[r]}) +\delta V_{h,M,i}^{\mathrm{{s}},[r]}\left( z_k+hg_i^\mathrm{{s}}(z_k,u_i,u_{j,k}^{[r]})\right) \bigr \}. \end{aligned}$$

The iteration is initialized with some given \(V_{h,M,i}^{\mathrm{{s}},[0]}(z_k)\) and \(u_{i,k}^{[0]}\), \(i=1,2\), \(k=0,\ldots , M\), and stopped when

$$\begin{aligned} \max _{\begin{array}{c} k=0,\ldots ,M\\ i=1,2 \end{array}}\bigl |V_{h,M,i}^{\mathrm{{s}},[r+1]}(z_k)-V_{h,M,i}^{\mathrm{{s}},[r]}(z_k)\bigr |<{\text {TOL}}, \end{aligned}$$

where \(\text {TOL}\) is a prescribed tolerance. Once the convergence criterion is satisfied, the functions \(V_{h,M,i}^\mathrm{{s}}:=V_{h,M,i}^{\mathrm{{s}},[r+1]}\) are the desired approximations to the value functions, \(V_i^\mathrm{{s}}\). The approximated optimal policies are defined as the monotone piecewise cubic Hermite interpolant \(u_{M,i}^{*\mathrm{{s}}}\) such that \(u_{M,i}^{*\mathrm{{s}}}(z_k):=u_{i,k}^{[r+1]}\), \(i=1,2\), \(k=0,1,\ldots , M.\) Finally, the approximate optimal trajectory is computed from (17) with \(u_{i,n}^{*\mathrm{{s}}}=u_{M,i}^{*\mathrm{{s}}}(x_n^*)\).

The time-dependent problem (5) with incentive (11) is discretized along the same lines. We introduce a fictitious big enough time horizon \(T=t_N=Nh>0\). The time-discrete, time-dependent value function is defined as the solution of the system of Bellman equations

$$\begin{aligned} V_{h,i}^\mathrm{{ns}}({t_{n-1}},x)= \max _{u_i\in \mathbb {U}_i}\left\{ hf_i(x,u_i,u_{j,n}^{*\mathrm{{ns}}}) +\delta V_{h,i}^\mathrm{{ns}}\left( {t_{n}}, x+hg_i^\mathrm{{ns}}(x,u_i,u_{j,n}^{*\mathrm{{ns}}},{t_{n}})\right) \right\} , \end{aligned}$$
(20)

where functions \(f_i\) and \(g_i^\mathrm{{ns}}\) are given by (4) and (13).

Equation (20) is supplemented with the artificial boundary condition \(V_{h,i}^\mathrm{{ns}}(t_N,x)=V_{h,i}^\mathrm{{s}}(x)\), \(i=1,2\), which is an obvious approximation to (14). The system (20) is numerically solved backward in time by

$$\begin{aligned} V_{h,M,i}^\mathrm{{ns}}({t_{n-1}},x_k)&= \max _{u_i\in \mathbb {U}_i}\left\{ hf_i(x_k,u_i,u_{j,n,k}^{*\mathrm{{ns}}})\right. \nonumber \\&\left. +\delta V_{h,M,i}^\mathrm{{ns}}\left( {t_{n}}, x_k +\,hg_i^\mathrm{{ns}}(x_k,u_i,u_{j,n,k}^{*\mathrm{{ns}}},{t_{n}})\right) \right\} ,\end{aligned}$$
(21)

where, for \(i,j=1,2\), \(i\ne j\),

$$\begin{aligned} u_{i,n,k}^{*\mathrm{{ns}}}= \arg \max _{u_i\in \mathbb {U}_i}\left\{ hf_i(x_k,u_i,u_{j,n,k}^{*\mathrm{{ns}}})\right. \left. +\,\delta V_{h,M,i}^\mathrm{{ns}}\left( {t_{n}}, x_k+hg_i^\mathrm{{ns}}(x_k,u_i,u_{j,n,k}^{*\mathrm{{ns}}},{t_{n}})\right) \right\} . \end{aligned}$$

The notation \(V_{h,M,i}^\mathrm{{ns}}({t_{n}},x)\) represents, as before, the monotone piecewise cubic Hermite interpolant defined by the values \(V_{h,M,i}^\mathrm{{ns}}({t_{n}},x_k)\), \(0\le k\le M\). The backward iteration is initialized using the boundary condition \(V_{h,M,i}^\mathrm{{ns}}({t_N},x_k)=V_{h,M,i}^\mathrm{{s}}(x_k)\), \(0\le k\le M\).

The approximated optimal policy at time \(t_n\), \(1\le n\le N\), is defined as the monotone piecewise cubic Hermite interpolant of the values \(u_{i,n,k}^{*\mathrm{{ns}}}\) and it is denoted by \(u_{M,i}^{*\mathrm{{ns}}}(x)\). Then, the optimal trajectory can be computed from (17) with \(u_{i,n}^{*\mathrm{{ns}}}=u_{M,i}^{*\mathrm{{ns}}}(x_n^*)\). System (21) is solved by a fixed-point iteration similar to that in (19). In this last computation a filtering process is applied to eliminate possible spurious oscillations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Frutos, J., Martín-Herrán, G. Does Flexibility Facilitate Sustainability of Cooperation Over Time? A Case Study from Environmental Economics. J Optim Theory Appl 165, 657–677 (2015). https://doi.org/10.1007/s10957-014-0573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0573-z

Keywords

Mathematics Subject Classification