Abstract
We explore invisible neutrino decay in which a heavy active neutrino state decays into a light sterile neutrino state and present a comparative analysis of two baseline options, 540 km and 360 km, for the ESSnuSB experimental setup. Our analysis shows that ESSnuSB can put a bound on the decay parameter τ3/m3 = 2.64 (1.68) × 10−11 s/eV for the baseline option of 360 (540) km at 3σ. The expected bound obtained for 360 km is slightly better than the corresponding one of DUNE for a charged current (CC) analysis. Furthermore, we show that the capability of ESSnuSB to discover decay, and to measure the decay parameter precisely, is better for the baseline option of 540 km than that of 360 km. Regarding effects of decay in δCP measurements, we find that in general the CP violation discovery potential is better in the presence of decay. The change in CP precision is significant if one assumes decay in data but no decay in theory.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].
M. Lindner, T. Ohlsson and W. Winter, A combined treatment of neutrino decay and neutrino oscillations, Nucl. Phys. B 607 (2001) 326 [hep-ph/0103170] [INSPIRE].
A. Acker and S. Pakvasa, Solar neutrino decay, Phys. Lett. B 320 (1994) 320 [hep-ph/9310207] [INSPIRE].
Y. Chikashige, R. N. Mohapatra and R. D. Peccei, Are there real goldstone bosons associated with broken lepton number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].
A. Bandyopadhyay, S. Choubey and S. Goswami, Neutrino decay confronts the SNO data, Phys. Lett. B 555 (2003) 33 [hep-ph/0204173] [INSPIRE].
Kamiokande-II collaboration, Observation of a neutrino burst from the supernova SN1987A, Phys. Rev. Lett. 58 (1987) 1490 [INSPIRE].
J. A. Frieman, H. E. Haber and K. Freese, Neutrino mixing, decays and supernova 1987A, Phys. Lett. B 200 (1988) 115 [INSPIRE].
M. Lindner, T. Ohlsson and W. Winter, Decays of supernova neutrinos, Nucl. Phys. B 622 (2002) 429 [astro-ph/0105309] [INSPIRE].
T2K collaboration, T2K measurements of muon neutrino and antineutrino disappearance using 3.13 × 1021 protons on target, Phys. Rev. D 103 (2021) L011101 [arXiv:2008.07921] [INSPIRE].
NOvA Collaboration, T. Nosek, Results on Neutrino and Antineutrino Oscillations from the NOvA Experiment, Ukr. J. Phys. 64 (2019) 613.
MINOS collaboration, The magnetized steel and scintillator calorimeters of the MINOS experiment, Nucl. Instrum. Meth. A 596 (2008) 190 [arXiv:0805.3170] [INSPIRE].
DUNE collaboration, Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics, arXiv:2002.03005 [INSPIRE].
J. Cao et al., Muon-decay medium-baseline neutrino beam facility, Phys. Rev. ST Accel. Beams 17 (2014) 090101 [arXiv:1401.8125] [INSPIRE].
S. Choubey, D. Dutta and D. Pramanik, Invisible neutrino decay in the light of NOvA and T2K data, JHEP 08 (2018) 141 [arXiv:1805.01848] [INSPIRE].
R. A. Gomes, A. L. G. Gomes and O. L. G. Peres, Constraints on neutrino decay lifetime using long-baseline charged and neutral current data, Phys. Lett. B 740 (2015) 345 [arXiv:1407.5640] [INSPIRE].
S. Choubey, S. Goswami and D. Pramanik, A study of invisible neutrino decay at DUNE and its effects on θ23 measurement, JHEP 02 (2018) 055 [arXiv:1705.05820] [INSPIRE].
A. Ghoshal, A. Giarnetti and D. Meloni, Neutrino Invisible Decay at DUNE: a multi-channel analysis, J. Phys. G 48 (2021) 055004 [arXiv:2003.09012] [INSPIRE].
J. Tang, T.-C. Wang and Y. Zhang, Invisible neutrino decays at the MOMENT experiment, JHEP 04 (2019) 004 [arXiv:1811.05623] [INSPIRE].
Super-Kamiokande collaboration, Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 74 (2006) 032002 [hep-ex/0604011] [INSPIRE].
ICAL collaboration, Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO), Pramana 88 (2017) 79 [arXiv:1505.07380] [INSPIRE].
M. C. Gonzalez-Garcia and M. Maltoni, Status of Oscillation plus Decay of Atmospheric and Long-Baseline Neutrinos, Phys. Lett. B 663 (2008) 405 [arXiv:0802.3699] [INSPIRE].
S. Choubey, S. Goswami, C. Gupta, S. M. Lakshmi and T. Thakore, Sensitivity to neutrino decay with atmospheric neutrinos at the INO-ICAL detector, Phys. Rev. D 97 (2018) 033005 [arXiv:1709.10376] [INSPIRE].
L. S. Mohan, Probing the sensitivity to leptonic δCP in presence of invisible decay of ν3 using atmospheric neutrinos, J. Phys. G 47 (2020) 115004 [arXiv:2006.04233] [INSPIRE].
KM3Net collaboration, Letter of intent for KM3NeT 2.0, J. Phys. G 43 (2016) 084001 [arXiv:1601.07459] [INSPIRE].
P. F. de Salas, S. Pastor, C. A. Ternes, T. Thakore and M. Tórtola, Constraining the invisible neutrino decay with KM3NeT-ORCA, Phys. Lett. B 789 (2019) 472 [arXiv:1810.10916] [INSPIRE].
JUNO collaboration, Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401 [arXiv:1507.05613] [INSPIRE].
T. Abrahão, H. Minakata, H. Nunokawa and A. A. Quiroga, Constraint on Neutrino Decay with Medium-Baseline Reactor Neutrino Oscillation Experiments, JHEP 11 (2015) 001 [arXiv:1506.02314] [INSPIRE].
ESSnuSB collaboration, A very intense neutrino super beam experiment for leptonic CP-violation discovery based on the European spallation source linac, Nucl. Phys. B 885 (2014) 127 [arXiv:1309.7022] [INSPIRE].
E. Wildner et al., The Opportunity Offered by the ESSnuSB Project to Exploit the Larger Leptonic CP-violation Signal at the Second Oscillation Maximum and the Requirements of This Project on the ESS Accelerator Complex, Adv. High Energy Phys. 2016 (2016) 8640493 [arXiv:1510.00493] [INSPIRE].
M. Ghosh and T. Ohlsson, A comparative study between ESSnuSB and T2HK in determining the leptonic CP phase, Mod. Phys. Lett. A 35 (2020) 2050058 [arXiv:1906.05779] [INSPIRE].
S. K. Agarwalla, S. Choubey and S. Prakash, Probing neutrino oscillation parameters using high power superbeam from ESS, JHEP 12 (2014) 020 [arXiv:1406.2219] [INSPIRE].
K. Chakraborty, K. N. Deepthi and S. Goswami, Spotlighting the sensitivities of Hyper-Kamiokande, DUNE and ESSνSB, Nucl. Phys. B 937 (2018) 303 [arXiv:1711.11107] [INSPIRE].
K. Chakraborty, S. Goswami, C. Gupta and T. Thakore, Enhancing the hierarchy and octant sensitivity of ESSνSB in conjunction with T2K, NOνA and ICAL@INO, JHEP 05 (2019) 137 [arXiv:1902.02963] [INSPIRE].
M. Blennow, E. Fernandez-Martinez, T. Ota and S. Rosauro-Alcaraz, Physics potential of the ESSνSB, Eur. Phys. J. C 80 (2020) 190 [arXiv:1912.04309] [INSPIRE].
T. Hahn, Routines for the diagonalization of complex matrices, physics/0607103 [INSPIRE].
C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press, Oxford U.K. (2007) [DOI].
E. K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].
P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
MEMPHYS collaboration, Study of the performance of a large scale water-Cherenkov detector (MEMPHYS), JCAP 01 (2013) 024 [arXiv:1206.6665] [INSPIRE].
P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large θ13, Phys. Rev. D 87 (2013) 033004 [arXiv:1209.5973] [INSPIRE].
T2K collaboration, Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of νe interactions at the far detector, Phys. Rev. D 96 (2017) 092006 [Erratum ibid. 98 (2018) 019902] [arXiv:1707.01048] [INSPIRE].
NOvA collaboration, Constraints on Oscillation Parameters from νe Appearance and νμ Disappearance in NOvA, Phys. Rev. Lett. 118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].
T2K collaboration, Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an Off-Axis Beam, Phys. Rev. Lett. 112 (2014) 181801 [arXiv:1403.1532] [INSPIRE].
MINOS collaboration, Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev. D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].
MINOS collaboration, Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].
Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
Super-Kamiokande collaboration, A measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [INSPIRE].
J. Nelson, MINOS Oscillation Results, talk at Neutrino 2006, Santa Fe, U.S.A., 17 June 2006.
A. Weber, New Results from the MINOS Experiment, talk at EPS-HEP 2007, Manchester, U.K., 20 July 2007, J. Phys. Conf. Ser. 110 (2008) 082021.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2010.16334
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Choubey, S., Ghosh, M., Kempe, D. et al. Exploring invisible neutrino decay at ESSnuSB. J. High Energ. Phys. 2021, 133 (2021). https://doi.org/10.1007/JHEP05(2021)133
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2021)133