Abstract
The main aim of the ESSνSB proposal is the discovery of the leptonic CP phase δCP with a high significance (5σ for 50% values of δCP) by utilizing the physics at the second oscillation maxima of the Pμe channel. It can achieve 3σ sensitivity to hierarchy for all values of δCP. In this work, we concentrate on the hierarchy and octant sensitivity of the ESSνSB experiment. We show that combining the ESSνSB experiment with the atmospheric neutrino data from the proposed India-based Neutrino Observatory (INO) experiment can result in an increased sensitivity to mass hierarchy. In addition, we also combine the results from the ongoing experiments T2K and NOνa assuming their full run-time and present the combined sensitivity of ESSνSB + ICAL@INO + T2K + NOνA. We show that while by itself ESSνSB can have up to 3σ hierarchy sensitivity, the combination of all the experiments can give up to 5σ sensitivity depending on the true hierarchy-octant combination. The octant sensitivity of ESSνSB is low by itself. However the combined sensitivity of all the above experiments can give up to 3σ sensitivity depending on the choice of true hierarchy and octant. We discuss the various degeneracies and the synergies that lead to the enhanced sensitivity when combining different experimental data.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
F. Capozzi et al., Global constraints on absolute neutrino masses and their ordering, Phys. Rev. D 95 (2017) 096014 [arXiv:1703.04471] [INSPIRE].
I. Esteban et al., Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].
P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].
Hyper-Kamiokande Working Group collaboration, A long baseline neutrino oscillation experiment using J-PARC neutrino beam and Hyper-Kamiokande, arXiv:1412.4673 [INSPIRE].
Hyper-Kamiokande collaboration, Physics potentials with the second Hyper-Kamiokande detector in Korea, PTEP 2018 (2018) 063C01 [arXiv:1611.06118] [INSPIRE].
DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].
E. Baussan et al., The use the a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP-violation and mass hierarchy, arXiv:1212.5048 [INSPIRE].
ESSnuSB collaboration, A very intense neutrino super beam experiment for leptonic CP-violation discovery based on the European spallation source linac, Nucl. Phys. B 885 (2014) 127 [arXiv:1309.7022] [INSPIRE].
S.K. Agarwalla, S. Prakash and S. Uma Sankar, Exploring the three flavor effects with future superbeams using liquid argon detectors, JHEP 03 (2014) 087 [arXiv:1304.3251] [INSPIRE].
M. Ghosh, S. Goswami and S.K. Raut, Maximizing the DUNE early physics output with current experiments, Eur. Phys. J. C 76 (2016) 114 [arXiv:1412.1744] [INSPIRE].
K. Bora, D. Dutta and P. Ghoshal, Determining the octant of θ 23 at LBNE in conjunction with reactor experiments, Mod. Phys. Lett. A 30 (2015) 1550066 [arXiv:1405.7482] [INSPIRE].
V. Barger et al., Configuring the Long-Baseline Neutrino Experiment, Phys. Rev. D 89 (2014) 011302 [arXiv:1307.2519] [INSPIRE].
K.N. Deepthi, S. C and R. Mohanta, Revisiting the sensitivity studies for leptonic CP-violation and mass hierarchy with T2K, NOnuA and LBNE experiments, New J. Phys. 17 (2015) 023035 [arXiv:1409.2343] [INSPIRE].
N. Nath, M. Ghosh and S. Goswami, The physics of antineutrinos in DUNE and determination of octant and δ CP, Nucl. Phys. B 913 (2016) 381 [arXiv:1511.07496] [INSPIRE].
S. C, K.N. Deepthi and R. Mohanta, A comprehensive study of the discovery potential of NOvA, T2K and T2HK experiments, Adv. High Energy Phys. 2016 (2016) 9139402 [arXiv:1408.6071] [INSPIRE].
P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large θ 13, Phys. Rev. D 87 (2013) 033004 [arXiv:1209.5973] [INSPIRE].
P. Ballett, S.F. King, S. Pascoli, N.W. Prouse and T. Wang, Sensitivities and synergies of DUNE and T2HK, Phys. Rev. D 96 (2017) 033003 [arXiv:1612.07275] [INSPIRE].
S.K. Agarwalla, M. Ghosh and S.K. Raut, A hybrid setup for fundamental unknowns in neutrino oscillations using T2HK (ν) and μ-DAR ( \( \overline{\nu} \) ), JHEP 05 (2017) 115 [arXiv:1704.06116] [INSPIRE].
M. Ghosh, Reason for T2K to run in dominant neutrino mode for detecting CP-violation, Phys. Rev. D 93 (2016) 073003 [arXiv:1512.02226] [INSPIRE].
M. Ghosh and O. Yasuda, Effect of systematics in the T2HK, T2HKK and DUNE experiments, Phys. Rev. D 96 (2017) 013001 [arXiv:1702.06482] [INSPIRE].
S.K. Raut, Matter effects at the T2HK and T2HKK experiments, Phys. Rev. D 96 (2017) 075029 [arXiv:1703.07136] [INSPIRE].
C.R. Das, J. Pulido, J. Maalampi and S. Vihonen, Determination of the θ 23 octant in long baseline neutrino experiments within and beyond the standard model, Phys. Rev. D 97 (2018) 035023 [arXiv:1708.05182] [INSPIRE].
K. Chakraborty, K.N. Deepthi and S. Goswami, Spotlighting the sensitivities of Hyper-Kamiokande, DUNE and ESSνSB, Nucl. Phys. B 937 (2018) 303 [arXiv:1711.11107] [INSPIRE].
S.K. Agarwalla, S. Choubey and S. Prakash, Probing neutrino oscillation parameters using high power superbeam from ESS, JHEP 12 (2014) 020 [arXiv:1406.2219] [INSPIRE].
ICAL collaboration, Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO), Pramana 88 (2017) 79 [arXiv:1505.07380] [INSPIRE].
A. Chatterjee, P. Ghoshal, S. Goswami and S.K. Raut, Octant sensitivity for large θ 13 in atmospheric and long baseline neutrino experiments, JHEP 06 (2013) 010 [arXiv:1302.1370] [INSPIRE].
E.K. Akhmedov et al. Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].
G. Barenboim, P.B. Denton, S.J. Parke and C.A. Ternes, Neutrino oscillation probabilities through the looking glass, Phys. Lett. B 791 (2019) 351 [arXiv:1902.00517] [INSPIRE].
M. Ghosh et al., New look at the degeneracies in the neutrino oscillation parameters and their resolution by T2K, NOνA and ICAL, Phys. Rev. D 93 (2016) 013013 [arXiv:1504.06283] [INSPIRE].
S. Prakash, U. Rahaman and S.U. Sankar, The need for an early anti-neutrino run of NOνA, JHEP 07 (2014) 070 [arXiv:1306.4125] [INSPIRE].
S.K. Agarwalla, S. Prakash and S.U. Sankar, Resolving the octant of θ 23 with T2K and NOvA, JHEP 07 (2013) 131 [arXiv:1301.2574] [INSPIRE].
P.A.N. Machado, H. Minakata, H. Nunokawa and R. Zukanovich Funchal, What can we learn about the lepton CP phase in the next 10 years?, JHEP 05 (2014) 109 [arXiv:1307.3248] [INSPIRE].
P. Coloma, H. Minakata and S.J. Parke, Interplay between appearance and disappearance channels for precision measurements of θ 23 and δ, Phys. Rev. D 90 (2014) 093003 [arXiv:1406.2551] [INSPIRE].
L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].
S.P. Mikheyev and A.Yu. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].
S.P. Mikheev and A.Yu. Smirnov, Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, Nuovo Cim. C 9 (1986) 17 [INSPIRE].
B. Brahmachari, S. Choubey and P. Roy, CP violation and matter effect for a variable earth density in very long baseline experiments, Nucl. Phys. B 671 (2003) 483 [hep-ph/0303078] [INSPIRE].
T2K collaboration, Combined analysis of neutrino and antineutrino oscillations at T2K, Phys. Rev. Lett. 118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].
NOvA collaboration, Constraints on oscillation parameters from ν e appearance and ν μ disappearance in NOvA, Phys. Rev. Lett. 118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].
S.K. Agarwalla, S. Prakash, S.K. Raut and S.U. Sankar, Potential of optimized NOvA for large θ (13) & combined performance with a LArTPC & T2K, JHEP 12 (2012) 075 [arXiv:1208.3644] [INSPIRE].
R. Patterson, The NOνA experiment. Status and outlook, talk given at XXV International Conference on Neutrino Physics and Astrophysics, June 3–9, Kyoto, Japan (2012).
E. Wildner et al., The opportunity offered by the ESSνSB project to exploit the larger leptonic CP-violation signal at the second oscillation maximum and the requirements of this project on the ESS accelerator complex, Adv. High Energy Phys. 2016 (2016) 8640493 [arXiv:1510.00493] [INSPIRE].
P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
P. Huber et al., New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: general long baseline experiment simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
I. Kato, Status of the t2k experiment, J. Phys. Conf. Ser. 136 (2008) 022018.
D. Casper, The nuance neutrino physics simulation and the future, Nucl. Phys. Proc. Suppl. 112 (2002) 161 [hep-ph/0208030] [INSPIRE].
A.M. Dziewonski and D. L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Int. 25 (1981) 297.
A. Chatterjee et al., A simulations study of the muon response of the iron calorimeter detector at the India-based Neutrino Observatory, 2014 JINST 9 P07001 [arXiv:1405.7243] [INSPIRE].
M.M. Devi et al., Hadron energy response of the Iron Calorimeter detector at the India-based Neutrino Observatory, 2013 JINST 8 P11003 [arXiv:1304.5115] [INSPIRE].
S. Agostinelli et al., GEANT4 — A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.
J. Allison et al., Recent developments in GEANT4, Nucl. Instrum. Meth. A 835 (2016) 186.
J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.
T. Thakore, A. Ghosh, S. Choubey and A. Dighe, The reach of INO for atmospheric neutrino oscillation parameters, JHEP 05 (2013) 058 [arXiv:1303.2534] [INSPIRE].
M.M. Devi, T. Thakore, S.K. Agarwalla and A. Dighe, Enhancing sensitivity to neutrino parameters at INO combining muon and hadron information, JHEP 10 (2014) 189 [arXiv:1406.3689] [INSPIRE].
R. Gandhi et al., Mass hierarchy determination via future atmospheric neutrino detectors, Phys. Rev. D 76 (2007) 073012 [arXiv:0707.1723] [INSPIRE].
M.C. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics, Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [INSPIRE].
M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Can atmospheric neutrino experiments provide the first hint of leptonic CP-violation?, Phys. Rev. D 89 (2014) 011301 [arXiv:1306.2500] [INSPIRE].
M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Evidence for leptonic CP phase from NOνA, T2K and ICAL: A chronological progression, Nucl. Phys. B 884 (2014) 274 [arXiv:1401.7243] [INSPIRE].
S. Prakash, S.K. Raut and S.U. Sankar, Getting the best out of T2K and NOvA, Phys. Rev. D 86 (2012) 033012 [arXiv:1201.6485] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1902.02963
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Chakraborty, K., Goswami, S., Gupta, C. et al. Enhancing the hierarchy and octant sensitivity of ESSνSB in conjunction with T2K, NOνA and ICAL@INO. J. High Energ. Phys. 2019, 137 (2019). https://doi.org/10.1007/JHEP05(2019)137
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2019)137