[go: up one dir, main page]

Skip to main content

Neighbourhood Graphs and Locally Minimal Triangulations

  • Chapter
  • First Online:
Transactions on Computational Science XXXIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 10990))

Abstract

Neighbourhood (or proximity) graphs, such as nearest neighbour graph, closest pairs, relative neighbourhood graph and k-nearest neighbour graph are useful tools in many tasks inspecting mutual relations, similarity and closeness of objects. Some of neighbourhood graphs are subsets of Delaunay triangulation (DT) and this relation can be used for efficient computation of these graphs. This paper concentrates on relation of neighbourhood graphs to the locally minimal triangulation (LMT) and shows that, although generally these graphs are not LMT subgraphs, in most cases LMT contains all or many edges of these graphs. This fact can also be used for the neighbourhood graphs computation, namely in kinetic problems, because LMT computation is easier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aichholzer, O., et al.: Triangulations intersect nicely. Discrete Comput. Geom. 16(4), 339–359 (1996)

    Article  MathSciNet  Google Scholar 

  2. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algorithms 31(1), 1–28 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bayer, T.: Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University, Prague, Czech Republic. https://web.natur.cuni.cz/~bayertom. Accessed 15 May 2017

  4. Beirouti, R., Snoeyink, J.: Implementations of the LMT heuristic for minimum weight triangulation. In: Proceedings of the Fourteenth Annual Symposium on Computational Geometry, SCG 1998, pp. 96–105. ACM, New York (1998)

    Google Scholar 

  5. Bose, P., Devroye, L., Evans, W.: Diamonds are not a minimum weight triangulation’s best friend. Int. J. Comput. Geom. Appl. 12(06), 445–453 (2002)

    Article  MathSciNet  Google Scholar 

  6. Cho, H.G.: On the expected number of common edges in Delaunay and greedy triangulation. J. WSCG 5(1–3), 50–59 (1997)

    Google Scholar 

  7. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis (Cambridge Monographs on Applied and Computational Mathematics). Cambridge University Press, New York (2006)

    Google Scholar 

  8. Dickerson, M.T., Keil, J.M., Montague, M.H.: A large subgraph of the minimum weight triangulation. Discrete Comput. Geom. 18(3), 289–304 (1997)

    Article  MathSciNet  Google Scholar 

  9. Dickerson, M.T., Montague, M.H.: A (usually?) connected subgraph of the minimum weight triangulation. In: Proceedings of the Twelfth Annual Symposium on Computational Geometry, SCG 1996, pp. 204–213. ACM, New York (1996)

    Google Scholar 

  10. Gavrilova, M., Rokne, J.: Swap conditions for dynamic Voronoi diagrams for circles and line segments. Comput. Aided Geom. Des. 16(2), 89–106 (1999)

    Article  MathSciNet  Google Scholar 

  11. Gavrilova, M., Rokne, J.: Updating the topology of the dynamic Voronoi diagram for spheres in Euclidean d-dimensional space. Comput. Aided Geom. Des. 20(4), 231–242 (2003)

    Article  MathSciNet  Google Scholar 

  12. Guibas, L., Russel, D.: An empirical comparison of techniques for updating Delaunay triangulations. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, SCG 2004, pp. 170–179. ACM, New York (2004)

    Google Scholar 

  13. Kim, Y.S., Park, D.G., Jung, H.Y., Cho, H.G., Dong, J.J., Ku, K.J.: An improved TIN compression using Delaunay triangulation. In: Proceedings of Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293), pp. 118–125 (1999)

    Google Scholar 

  14. Maus, A., Drange, J.M.: All closest neighbors are proper delaunay edges generalized, and its application to parallel algorithms. In: Proceedings of Norwegian informatikkonferanse, pp. 1–12 (2010)

    Google Scholar 

  15. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: concepts and applications of Voronoi diagrams. Probability and Statistics, 2nd edn. Wiley, NYC (2000)

    Google Scholar 

  16. Preparata, F.P., Shamos, M.: Computational Geometry: An Introduction. Springer, New York (1985). https://doi.org/10.1007/978-1-4612-1098-6

    Book  MATH  Google Scholar 

  17. Spelič, D., Novak, F., Žalik, B.: Delaunay triangulation benchmarks. J. Electr. Eng. 59(1), 49–52 (2008)

    Google Scholar 

  18. Su, P., Drysdale, R.L.S.: A comparison of sequential Delaunay triangulation algorithms. Comput. Geom. 7(5), 361–385 (1997)

    Article  MathSciNet  Google Scholar 

  19. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern Recogn. 12(4), 261–268 (1980)

    Article  MathSciNet  Google Scholar 

  20. Veltkamp, R.C.: The \(\gamma \)-neighborhood graph. Comput. Geom. 1(4), 227–246 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation, the project number 17-07690S, and by the Ministry of Education, Youth and Sports of the Czech Republic, project number LO1506 (PUNTIS). We would like to thank to T. Bayer from the Charles University in Prague, Czech Republic for supplying us the real terrain data for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Kolingerová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolingerová, I., Vomáčka, T., Maňák, M., Ferko, A. (2018). Neighbourhood Graphs and Locally Minimal Triangulations. In: Gavrilova, M., Tan, C. (eds) Transactions on Computational Science XXXIII. Lecture Notes in Computer Science(), vol 10990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58039-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58039-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58038-7

  • Online ISBN: 978-3-662-58039-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics