Abstract
Rotation forest (RoF) is an ensemble classifier based on the combination of linear analysis theories and decision tree algorithms. In existing works, the RoF has demonstrated high classification accuracy and good performance with a reasonable number of base classifiers. However, the classification accuracy drops drastically for linearly inseparable datasets. This paper presents a hybrid algorithm integrating kernel principal component analysis and RoF algorithm (KPCA-RoF) to solve the classification problem in linearly inseparable cases. We choose the radial basis function (RBF) kernel for the PCA algorithm to establish the nonlinear mapping and segmentation for gene data. Moreover, we focus on the determination of suitable parameters in the kernel functions for better performance. Experimental results show that our algorithm solves linearly inseparable problem and improves the classification accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, W., Wang, Z., Bu, X., Li, R., Zhou, M., Hu, Z.: Discovering of tumor-targeting peptides using bi-functional microarray. Adv. Healthcare Mater. 4(18), 2802–2808 (2015)
Stanbury, J.F., Baade, P.D., Yu, Y., Yu, X.Q.: Impact of geographic area level on measuring socioeconomic disparities in cancer survival in New South Wales, Australia: a period analysis. Cancer Epidemiol. 43, 56–62 (2016)
Liszewski, K.: Exploiting Gene-Expression Data (2012)
Liu, Y., Lu, H., Yan, K., Xia, H., An, C.: Applying cost-sensitive extreme learning machine and dissimilarity integration to gene expression data classification. Comput. Intell. Neurosci. 2017, 1–9 (2016)
Wang, Z., Zhang, J.: Impact of gene expression noise on organismal fitness and the efficacy of natural selection. Proc. Natl. Acad. Sci. 108(16), E67–E76 (2011)
Pastinen, T., Sladek, R., Gurd, S., Ge, B., Lepage, P., Lavergne, K., Verner, A.: A survey of genetic and epigenetic variation affecting human gene expression. Physiol. Genomics 16(2), 184–193 (2004)
Lu, H.J., An, C.L., Zheng, E.H., Lu, Y.: Dissimilarity based ensemble of extreme learning machine for gene expression data classification. Neurocomputing 128, 22–30 (2014)
Langdon, W.B., Buxton, B.F.: Genetic programming for mining DNA chip data from cancer patients. Genetic Programm. Evolvable Mach. 5(3), 251–257 (2004)
Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)
Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)
Su Chong, J., Shenggen, L.Y., et al.: Improving random forest and rotation forest for highly imbalanced datasets. Intell. Data Anal. 19(6), 1409–1432 (2015)
Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)
Gu, B., Sheng, V.S., Tay, K.Y., Romano, W., Li, S.: Incremental support vector learning for ordinal regression. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1403–1416 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Mika, S., Schölkopf, B., Smola, A.J., Müller, K.R., Scholz, M., Rätsch, G.: Kernel PCA and de-noising in feature spaces. In: NIPS, vol. 11, pp. 536–542, December 1998
Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). doi:10.1007/BFb0020217
Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recogn. 40(3), 863–874 (2007)
Olshen, L.B.J.F.R., Stone, C.J.: Classification and regression trees. Wadsworth Int. Group 93(99), 101 (1984)
Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)
Kuncheva, L.I., RodrÃguez, J.J.: An experimental study on rotation forest ensembles. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007, vol. 4472, pp. 459–468. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72523-7_46
Zhang, C.X., Zhang, J.S.: RotBoost: a technique for combining rotation forest and AdaBoost. Pattern Recogn. Lett. 29(10), 1524–1536 (2008)
Mousavi, R., Eftekhari, M., Haghighi, M.G.: A new approach to human microRNA target prediction using ensemble pruning and rotation forest. J. Bioinform. Comput. Biol. 13(06), 1550017 (2015)
Wong, L., You, Z.H., Ming, Z., Li, J., Chen, X., Huang, Y.A.: Detection of interactions between proteins through rotation forest and local phase quantization descriptors. Int. J. Mol. Sci. 17(1), 21 (2015)
Ayerdi, B., Romay, M.G.: Hyperspectral image analysis by spectral-spatial processing and anticipative hybrid extreme rotation forest classification. IEEE Trans. Geosci. Remote Sens. 54(5), 2627–2639 (2016)
Kuang, F., Xu, W., Zhang, S.: A novel hybrid KPCA and SVM with GA model for intrusion detection. Appl. Soft Comput. 18, 178–184 (2014)
Mengqi, N., Jingjing, D., Tianzhen, W., Diju, G., Jingang, H., Benbouzid, M.E.H.: A hybrid kernel PCA, hypersphere SVM and extreme learning machine approach for nonlinear process online fault detection. In: IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, pp. 002106–002111. IEEE, November 2015
Luo, K., Li, S., Ren Deng, W.Z., Cai, H.: Multivariate statistical kernel PCA for nonlinear process fault diagnosis in military barracks. Int. J. Hybrid Inf. Technol. 9(1), 195–206 (2016)
Boujnouni, M.E., Jedra, M., Zahid, N.: Support vector domain description with a new confidence coefficient. In: 2014 9th International Conference on Intelligent Systems: Theories and Applications (SITA-2014), pp. 1–8. IEEE, May 2014
Amari, S.I., Wu, S.: Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 12(6), 783–789 (1999)
Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, Upper Saddle River (1982)
Brereton, R.G.: The F distribution and its relationship to the chi squared and t distributions. J. Chemom. 29(11), 582–586 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lu, H., Meng, Y., Yan, K., Xue, Y., Gao, Z. (2017). Classifying Non-linear Gene Expression Data Using a Novel Hybrid Rotation Forest Method. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_64
Download citation
DOI: https://doi.org/10.1007/978-3-319-63315-2_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63314-5
Online ISBN: 978-3-319-63315-2
eBook Packages: Computer ScienceComputer Science (R0)