[go: up one dir, main page]

Skip to main content

Encoding 3D Leg Kinematics Using Spatially-Distributed, Population Coded Network Model

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14930))

Included in the following conference series:

  • 134 Accesses

Abstract

Controlling limbs in robotics is a nonlinear, complicated calculation that animals can do without significant effort. In this work we present a dynamical neural model with bioinspired sensory receptive fields which is capable of encoding the forward kinematics of a robotic leg. The model is implemented using the SNS-Toolbox. Synaptic conductance values are tuned using the Functional Subnetwork Approach. No optimization or machine learning is required. To understand how network construction affects encoding accuracy, we systematically varied the sensory neuron receptor functions, the number of sensory neurons, and neuron time constants. We use the root-mean-squared error to check the accuracy of the designed model. Finally, we show that our model with multiple outputs is more efficient than multiple networks with one output each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lynch, K., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, Cambridge, UK (2017)

    Book  Google Scholar 

  2. Burnod, Y., Grandguillaume, P., Otto, I., Ferraina, S., Johnson, P., Caminiti, R.: Visuomotor transformations underlying arm movements toward visual targets: a neural network model of cerebral cortical operations. J. Neurosci. 12, 1435–1453 (1992). https://doi.org/10.1523/JNEUROSCI.12-04-01435.1992

    Article  Google Scholar 

  3. Zubizarreta, A., Larrea, M., Irigoyen, E., Cabanes, I., Portillo, E.: Real time direct kinematic problem computation of the 3PRS robot using neural networks. Neurocomputing 271, 104–114 (2018). https://doi.org/10.1016/j.neucom.2017.02.098

    Article  Google Scholar 

  4. Smirnov, Y., Smirnov, D., Popov, A., Yakovenko, S.: Solving musculoskeletal biomechanics with machine learning. PeerJ Comput. Sci. 7, e663 (2021). https://doi.org/10.7717/peerj-cs.663

    Article  Google Scholar 

  5. Matheson, T.: Range fractionation in the locust metathoracic femoral chordotonal organ. J. Comp. Physiol. A. (1992). https://doi.org/10.1007/BF00191466

    Article  Google Scholar 

  6. Mamiya, A., et al.: Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg. Neuron (2023). https://doi.org/10.1016/j.neuron.2023.07.009

    Article  Google Scholar 

  7. Delcomyn, F., Nelson, M.E., Cocatre-Zilgien, J.H.: Sense organs of insect legs and the selection of sensors for agile walking robots. Int. J. Robot. Res. 15, 113–127 (1996). https://doi.org/10.1177/027836499601500201

    Article  Google Scholar 

  8. Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000). https://doi.org/10.1038/35039062

    Article  Google Scholar 

  9. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. (2017). https://doi.org/10.3389/fnbot.2017.00037

    Article  Google Scholar 

  10. Guie, C.K., Szczecinski, N.S.: Direct assembly and tuning of dynamical neural networks for kinematics. In: Conference on Biomimetic and Biohybrid Systems, pp. 321–331 (2022). https://doi.org/10.1007/978-3-031-20470-8_32

  11. Nourse, W.R.P., Jackson, C., Szczecinski, N.S., Quinn, R.D.: SNS-toolbox: an open source tool for designing synthetic nervous systems and interfacing them with cyber-physical systems. Biomimetics. 8, 247 (2023). https://doi.org/10.3390/biomimetics8020247

    Article  Google Scholar 

  12. Westheimer, G., McKee, S.P.: Integration regions for visual hyperacuity. Vision. Res. 17, 89–93 (1977). https://doi.org/10.1016/0042-6989(77)90206-1

    Article  Google Scholar 

  13. Westheimer, G., McKee, S.P.: Spatial configurations for visual hyperacuity. Vision. Res. 17, 941–947 (1977). https://doi.org/10.1016/0042-6989(77)90069-4

    Article  Google Scholar 

  14. Siegler, M.V.S., Burrows, M.: The morphology of local non-spiking interneurones in the metathoracic ganglion of the locust. J. Comp. Neurol. 183, 121–147 (1979). https://doi.org/10.1002/cne.901830110

    Article  Google Scholar 

  15. Burrows, M., Newland, P.L.: Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. J. Comp. Neurol. 329, 412–426 (1993). https://doi.org/10.1002/cne.903290311

    Article  Google Scholar 

  16. Bueschges, A., Kittmann, R., Schmitz, J.: Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. J. Comp. Physiol. A. 174, 685–700 (1994). https://doi.org/10.1007/BF00192718

    Article  Google Scholar 

  17. Gebehart, C., Büschges, A.: Temporal differences between load and movement signal integration in the sensorimotor network of an insect leg. J. Neurophysiol. 126, 1875–1890 (2021). https://doi.org/10.1152/jn.00399.2021

    Article  Google Scholar 

  18. Szczecinski, N.S., Quinn, R.D.: Template for the neural control of directed stepping generalized to all legs of MantisBot. Bioinspir. Biomim. 12, 045001 (2017). https://doi.org/10.1088/1748-3190/aa6dd9

    Article  Google Scholar 

  19. Li, Y., Sukhnandan, R., Gill, J.P., Chiel, H.J., Webster-Wood, V., Quinn, R.D.: A bioinspired synthetic nervous system controller for pick-and-place manipulation. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 8047–8053. IEEE, London, United Kingdom (2023). https://doi.org/10.1109/ICRA48891.2023.10161198

  20. Lyu, C., Abbott, L.F., Maimon, G.: Building an allocentric travelling direction signal via vector computation. Nature 601, 92–97 (2022). https://doi.org/10.1038/s41586-021-04067-0

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by NSF EFRI BRAID 2223793 to NSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohdan Zadokha .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zadokha, B., Szczecinski, N.S. (2025). Encoding 3D Leg Kinematics Using Spatially-Distributed, Population Coded Network Model. In: Szczecinski, N.S., Webster-Wood, V., Tresch, M., Nourse, W.R.P., Mura, A., Quinn, R.D. (eds) Biomimetic and Biohybrid Systems. Living Machines 2024. Lecture Notes in Computer Science(), vol 14930. Springer, Cham. https://doi.org/10.1007/978-3-031-72597-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72597-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72596-8

  • Online ISBN: 978-3-031-72597-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics