Abstract
Controlling limbs in robotics is a nonlinear, complicated calculation that animals can do without significant effort. In this work we present a dynamical neural model with bioinspired sensory receptive fields which is capable of encoding the forward kinematics of a robotic leg. The model is implemented using the SNS-Toolbox. Synaptic conductance values are tuned using the Functional Subnetwork Approach. No optimization or machine learning is required. To understand how network construction affects encoding accuracy, we systematically varied the sensory neuron receptor functions, the number of sensory neurons, and neuron time constants. We use the root-mean-squared error to check the accuracy of the designed model. Finally, we show that our model with multiple outputs is more efficient than multiple networks with one output each.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lynch, K., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, Cambridge, UK (2017)
Burnod, Y., Grandguillaume, P., Otto, I., Ferraina, S., Johnson, P., Caminiti, R.: Visuomotor transformations underlying arm movements toward visual targets: a neural network model of cerebral cortical operations. J. Neurosci. 12, 1435–1453 (1992). https://doi.org/10.1523/JNEUROSCI.12-04-01435.1992
Zubizarreta, A., Larrea, M., Irigoyen, E., Cabanes, I., Portillo, E.: Real time direct kinematic problem computation of the 3PRS robot using neural networks. Neurocomputing 271, 104–114 (2018). https://doi.org/10.1016/j.neucom.2017.02.098
Smirnov, Y., Smirnov, D., Popov, A., Yakovenko, S.: Solving musculoskeletal biomechanics with machine learning. PeerJ Comput. Sci. 7, e663 (2021). https://doi.org/10.7717/peerj-cs.663
Matheson, T.: Range fractionation in the locust metathoracic femoral chordotonal organ. J. Comp. Physiol. A. (1992). https://doi.org/10.1007/BF00191466
Mamiya, A., et al.: Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg. Neuron (2023). https://doi.org/10.1016/j.neuron.2023.07.009
Delcomyn, F., Nelson, M.E., Cocatre-Zilgien, J.H.: Sense organs of insect legs and the selection of sensors for agile walking robots. Int. J. Robot. Res. 15, 113–127 (1996). https://doi.org/10.1177/027836499601500201
Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000). https://doi.org/10.1038/35039062
Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. (2017). https://doi.org/10.3389/fnbot.2017.00037
Guie, C.K., Szczecinski, N.S.: Direct assembly and tuning of dynamical neural networks for kinematics. In: Conference on Biomimetic and Biohybrid Systems, pp. 321–331 (2022). https://doi.org/10.1007/978-3-031-20470-8_32
Nourse, W.R.P., Jackson, C., Szczecinski, N.S., Quinn, R.D.: SNS-toolbox: an open source tool for designing synthetic nervous systems and interfacing them with cyber-physical systems. Biomimetics. 8, 247 (2023). https://doi.org/10.3390/biomimetics8020247
Westheimer, G., McKee, S.P.: Integration regions for visual hyperacuity. Vision. Res. 17, 89–93 (1977). https://doi.org/10.1016/0042-6989(77)90206-1
Westheimer, G., McKee, S.P.: Spatial configurations for visual hyperacuity. Vision. Res. 17, 941–947 (1977). https://doi.org/10.1016/0042-6989(77)90069-4
Siegler, M.V.S., Burrows, M.: The morphology of local non-spiking interneurones in the metathoracic ganglion of the locust. J. Comp. Neurol. 183, 121–147 (1979). https://doi.org/10.1002/cne.901830110
Burrows, M., Newland, P.L.: Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. J. Comp. Neurol. 329, 412–426 (1993). https://doi.org/10.1002/cne.903290311
Bueschges, A., Kittmann, R., Schmitz, J.: Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. J. Comp. Physiol. A. 174, 685–700 (1994). https://doi.org/10.1007/BF00192718
Gebehart, C., Büschges, A.: Temporal differences between load and movement signal integration in the sensorimotor network of an insect leg. J. Neurophysiol. 126, 1875–1890 (2021). https://doi.org/10.1152/jn.00399.2021
Szczecinski, N.S., Quinn, R.D.: Template for the neural control of directed stepping generalized to all legs of MantisBot. Bioinspir. Biomim. 12, 045001 (2017). https://doi.org/10.1088/1748-3190/aa6dd9
Li, Y., Sukhnandan, R., Gill, J.P., Chiel, H.J., Webster-Wood, V., Quinn, R.D.: A bioinspired synthetic nervous system controller for pick-and-place manipulation. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 8047–8053. IEEE, London, United Kingdom (2023). https://doi.org/10.1109/ICRA48891.2023.10161198
Lyu, C., Abbott, L.F., Maimon, G.: Building an allocentric travelling direction signal via vector computation. Nature 601, 92–97 (2022). https://doi.org/10.1038/s41586-021-04067-0
Acknowledgments
This study was funded by NSF EFRI BRAID 2223793 to NSS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zadokha, B., Szczecinski, N.S. (2025). Encoding 3D Leg Kinematics Using Spatially-Distributed, Population Coded Network Model. In: Szczecinski, N.S., Webster-Wood, V., Tresch, M., Nourse, W.R.P., Mura, A., Quinn, R.D. (eds) Biomimetic and Biohybrid Systems. Living Machines 2024. Lecture Notes in Computer Science(), vol 14930. Springer, Cham. https://doi.org/10.1007/978-3-031-72597-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-72597-5_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72596-8
Online ISBN: 978-3-031-72597-5
eBook Packages: Computer ScienceComputer Science (R0)