[go: up one dir, main page]

Skip to main content

Fourier Test-Time Adaptation with Multi-level Consistency for Robust Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Deep classifiers may encounter significant performance degradation when processing unseen testing data from varying centers, vendors, and protocols. Ensuring the robustness of deep models against these domain shifts is crucial for their widespread clinical application. In this study, we propose a novel approach called Fourier Test-time Adaptation (FTTA), which employs a dual-adaptation design to integrate input and model tuning, thereby jointly improving the model robustness. The main idea of FTTA is to build a reliable multi-level consistency measurement of paired inputs for achieving self-correction of prediction. Our contribution is two-fold. First, we encourage consistency in global features and local attention maps between the two transformed images of the same input. Here, the transformation refers to Fourier-based input adaptation, which can transfer one unseen image into source style to reduce the domain gap. Furthermore, we leverage style-interpolated images to enhance the global and local features with learnable parameters, which can smooth the consistency measurement and accelerate convergence. Second, we introduce a regularization technique that utilizes style interpolation consistency in the frequency space to encourage self-consistency in the logit space of the model output. This regularization provides strong self-supervised signals for robustness enhancement. FTTA was extensively validated on three large classification datasets with different modalities and organs. Experimental results show that FTTA is general and outperforms other strong state-of-the-art methods.

Y. Huang and X. Yang—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zenodo.org/record/3904280#.YqIQvKhBy3A.

  2. 2.

    https://www.adcis.net/en/third-party/messidor/.

References

  1. Atwany, M., Yaqub, M.: DRGen: domain generalization in diabetic retinopathy classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 635–644. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_61

    Chapter  Google Scholar 

  2. Burgos-Artizzu, X.P., et al.: Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  3. Decencière, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., et al.: Feedback on a publicly distributed image database: the messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)

    Article  MATH  Google Scholar 

  4. Fan, X., Wang, Q., Ke, J., Yang, F., Gong, B., Zhou, M.: Adversarially adaptive normalization for single domain generalization. In: Proceedings of the IEEE/CVF CVPR, pp. 8208–8217 (2021)

    Google Scholar 

  5. Gao, J., Zhang, J., Liu, X., Darrell, T., Shelhamer, E., Wang, D.: Back to the source: diffusion-driven adaptation to test-time corruption. In: Proceedings of the IEEE/CVF CVPR, pp. 11786–11796 (2023)

    Google Scholar 

  6. Geng, B., Tao, D., Xu, C.: DAML: domain adaptation metric learning. IEEE Trans. Image Process. 20(10), 2980–2989 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  8. Huang, X., et al.: Test-time bi-directional adaptation between image and model for robust segmentation. Comput. Methods Programs Biomed. 233, 107477 (2023)

    Article  Google Scholar 

  9. Huang, Y., et al.: Online reflective learning for robust medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 652–662. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_62

    Chapter  Google Scholar 

  10. Khurana, A., Paul, S., Rai, P., Biswas, S., Aggarwal, G.: SITA: single image test-time adaptation. arXiv preprint arXiv:2112.02355 (2021)

  11. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE CVPR, pp. 5400–5409 (2018)

    Google Scholar 

  12. Li, Y., et al.: Deep domain generalization via conditional invariant adversarial networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 647–663. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_38

    Chapter  Google Scholar 

  13. Liang, J., et al.: Sketch guided and progressive growing GAN for realistic and editable ultrasound image synthesis. Med. Image Anal. 79, 102461 (2022)

    Article  Google Scholar 

  14. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF CVPR, pp. 1013–1023 (2021)

    Google Scholar 

  15. Liu, Y., Kothari, P., Van Delft, B., Bellot-Gurlet, B., Mordan, T., Alahi, A.: TTT++: when does self-supervised test-time training fail or thrive? In: Advances in Neural Information Processing Systems, vol. 34, pp. 21808–21820 (2021)

    Google Scholar 

  16. Ma, W., Chen, C., Zheng, S., Qin, J., Zhang, H., Dou, Q.: Test-time adaptation with calibration of medical image classification nets for label distribution shift. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 313–323. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_30

    Chapter  Google Scholar 

  17. Osowiechi, D., Hakim, G.A.V., Noori, M., Cheraghalikhani, M., Ben Ayed, I., Desrosiers, C.: TTTFlow: unsupervised test-time training with normalizing flow. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2126–2134 (2023)

    Google Scholar 

  18. Ren, J., Hacihaliloglu, I., Singer, E.A., Foran, D.J., Qi, X.: Adversarial domain adaptation for classification of prostate histopathology whole-slide images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 201–209. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_23

    Chapter  Google Scholar 

  19. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE ICCV, pp. 618–626 (2017)

    Google Scholar 

  20. Sharifzadeh, M., Tehrani, A.K., Benali, H., Rivaz, H.: Ultrasound domain adaptation using frequency domain analysis. In: 2021 IEEE IUS, pp. 1–4. IEEE (2021)

    Google Scholar 

  21. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts. In: International Conference on Machine Learning, pp. 9229–9248. PMLR (2020)

    Google Scholar 

  22. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE CVPR, pp. 7167–7176 (2017)

    Google Scholar 

  23. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: TENT: fully test-time adaptation by entropy minimization. In: ICLR (2021)

    Google Scholar 

  24. Yang, H., et al.: DLTTA: dynamic learning rate for test-time adaptation on cross-domain medical images. IEEE Trans. Med. Imaging 41(12), 3575–3586 (2022)

    Article  Google Scholar 

  25. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF CVPR, pp. 4085–4095 (2020)

    Google Scholar 

  26. Zakazov, I., Shaposhnikov, V., Bespalov, I., Dylov, D.V.: Feather-light Fourier domain adaptation in magnetic resonance imaging. In: Kamnitsas, K., et al. (eds.) DART 2022. LNCS, vol. 13542, pp. 88–97. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16852-9_9

    Chapter  Google Scholar 

  27. Zhao, L., Liu, T., Peng, X., Metaxas, D.: Maximum-entropy adversarial data augmentation for improved generalization and robustness. In: Advances in Neural Information Processing Systems, vol. 33, pp. 14435–14447 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the grant from National Natural Science Foundation of China (Nos. 62171290, 62101343), Shenzhen-Hong Kong Joint Research Program (No. SGDX20201103095613036), and Shenzhen Science and Technology Innovations Committee (No. 20200812143441001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ni .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 103 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y. et al. (2023). Fourier Test-Time Adaptation with Multi-level Consistency for Robust Classification. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics