[go: up one dir, main page]

Skip to main content

Feather-Light Fourier Domain Adaptation in Magnetic Resonance Imaging

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer (DART 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13542))

Included in the following conference series:

  • 1029 Accesses

Abstract

Generalizability of deep learning models may be severely affected by the difference in the distributions of the train (source domain) and the test (target domain) sets, e.g., when the sets are produced by different hardware. As a consequence of this domain shift, a certain model might perform well on data from one clinic, and then fail when deployed in another. We propose a very light and transparent approach to perform test-time domain adaptation. The idea is to substitute the target low-frequency Fourier space components that are deemed to reflect the style of an image. To maximize the performance, we implement the “optimal style donor” selection technique, and use a number of source data points for altering a single target scan appearance (Multi-Source Transferring). We study the effect of severity of domain shift on the performance of the method, and show that our training-free approach reaches the state-of-the-art level of complicated deep domain adaptation models. The code for our experiments is released (https://github.com/kechua/Feather-Light-Fourier-Domain-Adaptation/).

I. Zakazov and V. Shaposhnikov—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feng, Y., Ma, B., Zhang, J., Zhao, S., Xia, Y., Tao, D.: FIBA: frequency-injection based backdoor attack in medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20876–20885, June 2022

    Google Scholar 

  2. Ganin, Y., et al.: Domain-adversarial training of neural networks. CoRR arXiv:1505.07818 (2015)

  3. Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., Shlens, J.: Exploring the structure of a real-time, arbitrary neural artistic stylization network. In: British Machine Vision Conference 2017, BMVC 2017, London, UK, 4–7 September 2017. BMVA Press (2017)

    Google Scholar 

  4. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2022)

    Article  Google Scholar 

  5. Jenkinson, M., Bannister, P.R., Brady, M., Smith, S.M.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002)

    Article  Google Scholar 

  6. Jenkinson, M., Smith, S.: Global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–56 (2001)

    Article  Google Scholar 

  7. Joshi, N., Burlina, P.: AI fairness via domain adaptation. arXiv:2104.01109 (2021)

  8. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  9. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8107–8116 (2020)

    Google Scholar 

  10. Kong, F., Shadden, S.C.: A generalizable deep-learning approach for cardiac magnetic resonance image segmentation using image augmentation and attention U-Net. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 287–296. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_29

    Chapter  Google Scholar 

  11. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  12. Liu, X., Guo, X., Liu, Y., Yuan, Y.: Consolidated domain adaptive detection and localization framework for cross-device colonoscopic images. Med. Image Anal. 71, 102052 (2021)

    Article  Google Scholar 

  13. Ma, C., Ji, Z., Gao, M.: Neural style transfer improves 3D cardiovascular MR image segmentation on inconsistent data. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 128–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_15

    Chapter  Google Scholar 

  14. Nikolov, S., et al.: Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. arXiv preprint arXiv:1809.04430 (2018)

  15. Perone, C.S., Ballester, P., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. Neuroimage 194, 1–11 (2019)

    Article  Google Scholar 

  16. Pronina, V., Kokkinos, F., Dylov, D.V., Lefkimmiatis, S.: Microscopy image restoration with deep Wiener-Kolmogorov filters. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 185–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_12

    Chapter  Google Scholar 

  17. Sharifzadeh, M., Tehrani, A.K.Z., Benali, H., Rivaz, H.: Ultrasound domain adaptation using frequency domain analysis. arXiv:2109.09969 (2021)

  18. Shipitsin, V., Bespalov, I., Dylov, D.V.: GAFL: global adaptive filtering layer for computer vision. arXiv: 2010.01177 (2021)

  19. Shirokikh, B., Zakazov, I., Chernyavskiy, A., Fedulova, I., Belyaev, M.: First U-Net layers contain more domain specific information than the last ones. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 117–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_12

    Chapter  Google Scholar 

  20. Souza, R., et al.: An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement. Neuroimage 170, 482–494 (2018)

    Article  Google Scholar 

  21. Wang, J., et al.: Multi-class ASD classification based on functional connectivity and functional correlation tensor via multi-source domain adaptation and multi-view sparse representation. IEEE Trans. Med. Imaging 39(10), 3137–3147 (2020)

    Article  Google Scholar 

  22. Wang, M., Zhang, D., Huang, J., Yap, P.T., Shen, D., Liu, M.: Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation. IEEE Trans. Med. Imaging 39(3), 644–655 (2020)

    Article  Google Scholar 

  23. Welander, P., Karlsson, S., Eklund, A.: Generative adversarial networks for image-to-image translation on multi-contrast MR images - a comparison of CycleGAN and UNIT. CoRR arXiv:1806.07777 (2018)

  24. Wollmann, T., Eijkman, C.S., Rohr, K.: Adversarial domain adaptation to improve automatic breast cancer grading in lymph nodes. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 582–585 (2018)

    Google Scholar 

  25. Yang, Y., Lao, D., Sundaramoorthi, G., Soatto, S.: Phase consistent ecological domain adaptation, pp. 9008–9017 (2020). https://doi.org/10.1109/CVPR42600.2020.00903

  26. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4084–4094 (2020)

    Google Scholar 

  27. Zhang, L., Li, H.: SR-SIM: a fast and high performance IQA index based on spectral residual. In: 2012 19th IEEE International Conference on Image Processing, pp. 1473–1476 (2012)

    Google Scholar 

Download references

Acknowledgements

Ivan Zakazov was supported by RSF grant 20-71-10134. Philips is the owner of the IP rights on the work described in this publication.

We warmly thank Prof. Kamnitsas for fruitful discussions in 2021 during early stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Dylov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 582 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zakazov, I., Shaposhnikov, V., Bespalov, I., Dylov, D.V. (2022). Feather-Light Fourier Domain Adaptation in Magnetic Resonance Imaging. In: Kamnitsas, K., et al. Domain Adaptation and Representation Transfer. DART 2022. Lecture Notes in Computer Science, vol 13542. Springer, Cham. https://doi.org/10.1007/978-3-031-16852-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16852-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16851-2

  • Online ISBN: 978-3-031-16852-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics