Abstract
Generalizability of deep learning models may be severely affected by the difference in the distributions of the train (source domain) and the test (target domain) sets, e.g., when the sets are produced by different hardware. As a consequence of this domain shift, a certain model might perform well on data from one clinic, and then fail when deployed in another. We propose a very light and transparent approach to perform test-time domain adaptation. The idea is to substitute the target low-frequency Fourier space components that are deemed to reflect the style of an image. To maximize the performance, we implement the “optimal style donor” selection technique, and use a number of source data points for altering a single target scan appearance (Multi-Source Transferring). We study the effect of severity of domain shift on the performance of the method, and show that our training-free approach reaches the state-of-the-art level of complicated deep domain adaptation models. The code for our experiments is released (https://github.com/kechua/Feather-Light-Fourier-Domain-Adaptation/).
I. Zakazov and V. Shaposhnikov—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Feng, Y., Ma, B., Zhang, J., Zhao, S., Xia, Y., Tao, D.: FIBA: frequency-injection based backdoor attack in medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20876–20885, June 2022
Ganin, Y., et al.: Domain-adversarial training of neural networks. CoRR arXiv:1505.07818 (2015)
Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., Shlens, J.: Exploring the structure of a real-time, arbitrary neural artistic stylization network. In: British Machine Vision Conference 2017, BMVC 2017, London, UK, 4–7 September 2017. BMVA Press (2017)
Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2022)
Jenkinson, M., Bannister, P.R., Brady, M., Smith, S.M.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002)
Jenkinson, M., Smith, S.: Global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–56 (2001)
Joshi, N., Burlina, P.: AI fairness via domain adaptation. arXiv:2104.01109 (2021)
Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8107–8116 (2020)
Kong, F., Shadden, S.C.: A generalizable deep-learning approach for cardiac magnetic resonance image segmentation using image augmentation and attention U-Net. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 287–296. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_29
Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Liu, X., Guo, X., Liu, Y., Yuan, Y.: Consolidated domain adaptive detection and localization framework for cross-device colonoscopic images. Med. Image Anal. 71, 102052 (2021)
Ma, C., Ji, Z., Gao, M.: Neural style transfer improves 3D cardiovascular MR image segmentation on inconsistent data. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 128–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_15
Nikolov, S., et al.: Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. arXiv preprint arXiv:1809.04430 (2018)
Perone, C.S., Ballester, P., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. Neuroimage 194, 1–11 (2019)
Pronina, V., Kokkinos, F., Dylov, D.V., Lefkimmiatis, S.: Microscopy image restoration with deep Wiener-Kolmogorov filters. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 185–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_12
Sharifzadeh, M., Tehrani, A.K.Z., Benali, H., Rivaz, H.: Ultrasound domain adaptation using frequency domain analysis. arXiv:2109.09969 (2021)
Shipitsin, V., Bespalov, I., Dylov, D.V.: GAFL: global adaptive filtering layer for computer vision. arXiv: 2010.01177 (2021)
Shirokikh, B., Zakazov, I., Chernyavskiy, A., Fedulova, I., Belyaev, M.: First U-Net layers contain more domain specific information than the last ones. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 117–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_12
Souza, R., et al.: An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement. Neuroimage 170, 482–494 (2018)
Wang, J., et al.: Multi-class ASD classification based on functional connectivity and functional correlation tensor via multi-source domain adaptation and multi-view sparse representation. IEEE Trans. Med. Imaging 39(10), 3137–3147 (2020)
Wang, M., Zhang, D., Huang, J., Yap, P.T., Shen, D., Liu, M.: Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation. IEEE Trans. Med. Imaging 39(3), 644–655 (2020)
Welander, P., Karlsson, S., Eklund, A.: Generative adversarial networks for image-to-image translation on multi-contrast MR images - a comparison of CycleGAN and UNIT. CoRR arXiv:1806.07777 (2018)
Wollmann, T., Eijkman, C.S., Rohr, K.: Adversarial domain adaptation to improve automatic breast cancer grading in lymph nodes. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 582–585 (2018)
Yang, Y., Lao, D., Sundaramoorthi, G., Soatto, S.: Phase consistent ecological domain adaptation, pp. 9008–9017 (2020). https://doi.org/10.1109/CVPR42600.2020.00903
Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4084–4094 (2020)
Zhang, L., Li, H.: SR-SIM: a fast and high performance IQA index based on spectral residual. In: 2012 19th IEEE International Conference on Image Processing, pp. 1473–1476 (2012)
Acknowledgements
Ivan Zakazov was supported by RSF grant 20-71-10134. Philips is the owner of the IP rights on the work described in this publication.
We warmly thank Prof. Kamnitsas for fruitful discussions in 2021 during early stages of this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zakazov, I., Shaposhnikov, V., Bespalov, I., Dylov, D.V. (2022). Feather-Light Fourier Domain Adaptation in Magnetic Resonance Imaging. In: Kamnitsas, K., et al. Domain Adaptation and Representation Transfer. DART 2022. Lecture Notes in Computer Science, vol 13542. Springer, Cham. https://doi.org/10.1007/978-3-031-16852-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-16852-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16851-2
Online ISBN: 978-3-031-16852-9
eBook Packages: Computer ScienceComputer Science (R0)