Abstract
Would you trust physicians if they cannot explain their decisions to you? Medical diagnostics using machine learning gained enormously in importance within the last decade. However, without further enhancements many state-of-the-art machine learning methods are not suitable for medical application. The most important reasons are insufficient data set quality and the black-box behavior of machine learning algorithms such as Deep Learning models. Consequently, end-users cannot correct the model’s decisions and the corresponding explanations. The latter is crucial for the trustworthiness of machine learning in the medical domain. The research field explainable interactive machine learning searches for methods that address both shortcomings. This paper extends the explainable and interactive CAIPI algorithm and provides an interface to simplify human-in-the-loop approaches for image classification. The interface enables the end-user (1) to investigate and (2) to correct the model’s prediction and explanation, and (3) to influence the data set quality. After CAIPI optimization with only a single counterexample per iteration, the model achieves an accuracy of \(97.48\%\) on the Medical MNIST and \(95.02\%\) on the Fashion MNIST. This accuracy is approximately equal to state-of-the-art Deep Learning optimization procedures. Besides, CAIPI reduces the labeling effort by approximately \(80\%\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bastani, O., Kim, C., Bastani, H.: Interpreting blackbox models via model extraction (2017). http://arxiv.org/abs/1705.08504
Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020). https://doi.org/10.3390/info11020125
Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016). https://doi.org/10.1007/s40708-016-0042-6
Hund, M., et al.: Analysis of patient groups and immunization results based on subspace clustering. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds.) BIH 2015. LNCS (LNAI), vol. 9250, pp. 358–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23344-4_35
Kieseberg, P., Schantl, J., Frühwirt, P., Weippl, E., Holzinger, A.: Witnesses for the doctor in the loop. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds.) BIH 2015. LNCS (LNAI), vol. 9250, pp. 369–378. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23344-4_36
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980
Kourou, K., Exarchos, T., Exarchos, K., Karamouzis, M., Fotiadis, D.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13 (2014). https://doi.org/10.1016/j.csbj.2014.11.005
Lozano, A.P.: Medical MNIST Classification (2017). https://github.com/apolanco3225/Medical-MNIST-Classification
Plumb, G., Molitor, D., Talwalkar, A.S.: Model agnostic supervised local explanations. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 2520–2529 (2018). https://proceedings.neurips.cc/paper/2018/hash/b495ce63ede0f4efc9eec62cb947c162-Abstract.html
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 1135–1144. ACM (2016). https://doi.org/10.1145/2939672.2939778
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x
Sahoo, D., Pham, Q., Lu, J., Hoi, S.C.H.: Online deep learning: learning deep neural networks on the fly. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018, pp. 2660–2666. ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/369
Schmid, U., Finzel, B.: Mutual explanations for cooperative decision making in medicine. Künstliche Intelligenz 34(2), 227–233 (2020). https://doi.org/10.1007/s13218-020-00633-2
Schramowski, P., et al.: Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nat. Mach. Intell. 2(8), 476–486 (2020). https://doi.org/10.1038/s42256-020-0212-3
Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2012). https://doi.org/10.2200/S00429ED1V01Y201207AIM018
Teso, S., Kersting, K.: Explanatory interactive machine learning. In: Conitzer, V., Hadfield, G.K., Vallor, S. (eds.) Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, AIES 2019, Honolulu, HI, USA, 27–28 January 2019, pp. 239–245. ACM (2019). https://doi.org/10.1145/3306618.3314293
Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_52
Yang, J., Shi, R., Ni, B.: MedMNIST classification decathlon: a lightweight AutoML benchmark for medical image analysis. In: IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 191–195 (2021)
Zalando SE: Fashion MNIST (2017). https://www.kaggle.com/zalando-research/fashionmnist
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Slany, E., Ott, Y., Scheele, S., Paulus, J., Schmid, U. (2022). CAIPI in Practice: Towards Explainable Interactive Medical Image Classification. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-08341-9_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08340-2
Online ISBN: 978-3-031-08341-9
eBook Packages: Computer ScienceComputer Science (R0)