Abstract
Highly-heterogeneous and fast-arriving large amounts of data, otherwise said Big Data, induced the development of novel Data Management technologies. In this paper, the members of the IFIP Working Group 2.6 share their expertise in some of these technologies, focusing on: recent advancements in data integration, metadata management, data quality, graph management, as well as data stream and fog computing are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aberer, K., Boyarsky, A., Cudré-Mauroux, P., Demartini, G., Ruchayskiy, O.: Sciencewise: a web-based interactive semantic platform for scientific collaboration. In: International Semantic Web Conference (ISWC) (2011)
Aberer, K., et al.: Emergent semantics principles and issues. In: Lee, Y.J., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 25–38. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24571-1_2
Ali, S.M.F., Wrembel, R.: Towards a cost model to optimize user-defined functions in an ETL workflow based on user-defined performance metrics. In: European Conference on Advances in Databases and Information Systems (ADBIS), pp. 441–456 (2019)
Allab, K., Labiod, L., Nadif, M.: A semi-NMF-PCA unified framework for data clustering. IEEE Trans. Knowl. Data Eng. (TKDE) 29(1), 2–16 (2016)
Alotaibi, R., Bursztyn, D., Deutsch, A., Manolescu, I., Zampetakis, S.: Towards scalable hybrid stores: constraint-based rewriting to the rescue. In: International Conference on Management of Data (SIGMOD), pp. 1660–1677 (2019)
Anderson, W.N., Jr., Morley, T.D.: Eigenvalues of the Laplacian of a graph. Linear Multilinear Algebra 18(2), 141–145 (1985)
Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. ProPublica (2016)
Barbieri, N., Bonchi, F., Manco, G.: Who to follow and why: link prediction with explanations. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1266–1275 (2014)
Batini, C., Scannapieco, M.: Data and Information Quality. DSA, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24106-7
Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Conference on Advances in Neural Information Processing Systems (NIPS), pp. 2787–2795 (2013)
Bouguettaya, A., Benatallah, B., Elmargamid, A.: Interconnecting Heterogeneous Information Systems. Kluwer (1998)
Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv:1312.6203 (2013)
Bugiotti, F., Bursztyn, D., Deutsch, A., Manolescu, I., Zampetakis, S.: Flexible hybrid stores: constraint-based rewriting to the rescue. In: IEEE International Conference on Data Engineering (ICDE), pp. 1394–1397 (2016)
Cai, D., He, X., Han, J.: Spectral regression: a unified subspace learning framework for content-based image retrieval. In: ACM Multimedia, pp. 403–412 (2007)
Cao, S., Lu, W., Xu, Q.: GraRep: Learning graph representations with global structural information. In: International Conference on Information and Knowledge Management (CIKM), pp. 891–900 (2015)
Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI Conference on Artificial Intelligence (2016)
Catarci, T., Scannapieco, M., Console, M., Demetrescu, C.: My (fair) big data. In: IEEE International Conference on Big Data, pp. 2974–2979 (2017)
Ceravolo, P., Zavatarelli, F.: Knowledge acquisition in process intelligence. In: International Conference on Information and Communication Technology Research (ICTRC), pp. 218–221 (2015)
Ceravolo, P., et al.: Big data semantics. J. Data Seman. 7(2), 65–85 (2018)
Ceravolo, P., Damiani, E., Torabi, M., Barbon, S.: Toward a new generation of log pre-processing methods for process mining. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNBIP, vol. 297, pp. 55–70. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65015-9_4
Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.): SIMPDA 2016. LNBIP, vol. 307. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74161-1
da Costa, V.G.T., de Leon Ferreira, A.C.P., Junior, S.B., et al.: Strict very fast decision tree: a memory conservative algorithm for data stream mining. Pattern Recogn. Lett. 116, 22–28 (2018)
Cudré-Mauroux, P.: Leveraging knowledge graphs for big data integration: the XI pipeline. Seman. Web 11(1), 13–17 (2020)
Damiani, E., Ardagna, C., Ceravolo, P., Scarabottolo, N.: Toward model-based big data-as-a-service: the TOREADOR approach. In: Kirikova, M., Nørvåg, K., Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 3–9. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66917-5_1
Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize its potential. IEEE Comput. 49(8), 112–116 (2016)
Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: ontology based access to distributed and semi-structured information. In: Meersman, R., Tari, Z., Stevens, S. (eds.) Database Semantics. ITIFIP, vol. 11, pp. 351–369. Springer, Boston (1999). https://doi.org/10.1007/978-0-387-35561-0_20
Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Conference on Advances in Neural Information Processing Systems (NIPS), pp. 3844–3852 (2016)
Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: Large-scale linked data integration using probabilistic reasoning and crowdsourcing. VLDB J. 22(5), 665–687 (2013)
Duggan, J., et al.: The BigDAWG polystore system. SIGMOD Rec. 44(2), 11–16 (2015)
Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: Innovations in Theoretical Computer Science, pp. 214–226 (2012)
Elmagarmid, A., Rusinkiewicz, M., Sheth, A. (eds.): Management of Heterogeneous and Autonomous Database Systems. Morgan Kaufmann (1999)
van Engelen, J.E., Boekhout, H.D., Takes, F.W.: Explainable and efficient link prediction in real-world network data. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds.) IDA 2016. LNCS, vol. 9897, pp. 295–307. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46349-0_26
Esteves, D., Rula, A., Reddy, A.J., Lehmann, J.: Toward veracity assessment in RDF knowledge bases: an exploratory analysis. J. Data Inf. Qual. 9(3), 16:1–16:26 (2018)
Freeman, L.C.: Visualizing social networks. J. Soc. Struct. 1(1), 4 (2000)
Frías-Blanco, I., del Campo-Ávila, J., Ramos-Jimenez, G., Morales-Bueno, R., Ortiz-Díaz, A., Caballero-Mota, Y.: Online and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans. Knowl. Data Eng. (TKDE) 27(3), 810–823 (2014)
Futia, G., Vetrò, A.: On the integration of knowledge graphs into deep learning models for a more comprehensible AI? Three challenges for future research. Information 11(2), 122 (2020)
Gadepally, V., et al.: The BigDAWG polystore system and architecture. In: IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6 (2016)
Gama, J., Gaber, M.M.: Learning from Data Streams: Processing Techniques in Sensor Networks. Springer, Berlin (2007). https://doi.org/10.1007/3-540-73679-4
Gaspar, D., Coric, I. (eds.): Bridging relational and NoSQL databases. In: IGI (2017)
Gray, P., Kerschberg, L., King, P., Poulovassilje, A. (eds.): The Functional Approach to Data Management, Modeling, Analyzing and Integrating Heterogeneous Data. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-05372-0
Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 855–864 (2016)
Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Conference on Advances in Neural Information Processing Systems (NIPS), pp. 1024–1034 (2017)
Hassan, N., Li, C., Yang, J., Yu, C.: Introduction to the special issue on combating digital misinformation and disinformation. J. Data Inf. Qual. 11(3), 9:1–9:3 (2019)
Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv:1506.05163 (2015)
Hießl, T., Hochreiner, C., Schulte, S.: Towards a framework for data stream processing in the fog. Informatik Spektrum 42(4), 256–265 (2019). https://doi.org/10.1007/s00287-019-01192-z
Hofmann, T., Buhmann, J.: Multidimensional scaling and data clustering. In: Advances in Neural Information Processing Systems, pp. 459–466 (1995)
Hsiao, D.K., Neuhold, E.J., Sacks-Davis, R.: IFIP TC2 WG2.6 Database Semantics Conference on Interoperable Database Systems. Elsevier (2014)
Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses. Springer, Berlin (2003). https://doi.org/10.1007/978-3-662-05153-5
Jeffery, K.G.: Metadata: the future of information systems. State of the art and research themes, information systems engineering (2000)
Jin, X., Wah, B.W., Cheng, X., Wang, Y.: Significance and challenges of big data research. Big Data Res. 2(2), 59–64 (2015)
Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Incremental consolidation of data-intensive multi-flows. IEEE Trans. Knowl. Data Eng. (TKDE) 28(5), 1203–1216 (2016)
Jozashoori, S., Vidal, M.: Mapsdi: a scaled-up semantic data integration framework for knowledge graph creation. In: International Conference on the Move to Meaningful Internet Systems (OTM), LNCS, vol. 11877, pp. 58–75 (2019)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 (2016)
Kolev, B., Bondiombouy, C., Valduriez, P., Jiménez-Peris, R., Pau, R., Pereira, J.: The CloudMdsQL multistore system. In: International Conference on Management of Data (SIGMOD), pp. 2113–2116 (2016)
Kuo, T.T., Kim, H.E., Ohno-Machado, L.: Blockchain distributed ledger technologies for biomedical and health care applications. J. Am. Med. Inform. Assoc. 24(6), 1211–1220 (2017)
Laborie, S., Manzat, A.M., Sèdes, F.: Managing and querying efficiently distributed semantic multimedia metadata collections. IEEE MultiMedia 16(4), 12–20 (2009)
Lara-Benítez, P., Carranza-García, M., García-Gutiérrez, J., Riquelme, J.C.: Asynchronous dual-pipeline deep learning framework for online data stream classification. Integr. Comput. Aided Eng. 1(2), 1–19 (2020)
Lawrence, R.: Integration and virtualization of relational SQL and NoSQL systems including MySQL and MongoDB. In: IEEE International Conference on Computational Science and Computational Intelligence (CSCI), pp. 285–219 (2014)
Leida, M., Ceravolo, P., Damiani, E., Asal, R., Colombo, M.: Dynamic access control to semantics-aware streamed process logs. J. Data Seman. 8(3), 203–218 (2019)
Li, S., Da Xu, L., Zhao, S.: 5G internet of things: a survey. J. Ind. Inf. Integr. 10, 1–9 (2018)
Li, X., Dong, X.L., Lyons, K., Meng, W., Srivastava, D.: Truth finding on the deep web: is the problem solved? VLDB Endownment 6(2), 97–108 (2012)
Lin, Y., Liu, Z., Sun, M.: Knowledge representation learning with entities, attributes and relations. Ethnicity 1, 41–52 (2016)
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI Conference on Artificial Intelligence (2015)
Mavlyutov, R., Curino, C., Asipov, B., Cudré-Mauroux, P.: Dependency-driven analytics: a compass for uncharted data oceans. In: Conference on Innovative Data Systems Research (CIDR) (2017)
Mayer-Schonberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We Live, Work, and Think. John Murray (2013)
Meersman, R., Tari, Z., Stevens, S. (eds.): Database Semantics. ITIFIP, vol. 11. Springer, Boston (1999). https://doi.org/10.1007/978-0-387-35561-0
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. CoRR abs/1908.09635 (2019)
Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutorials 20(4), 2923–2960 (2018)
Nadal, S., et al.: A software reference architecture for semantic-aware big data systems. Inf. Softw. Technol. (IST) 90, 75–92 (2017)
Noy, N.F., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)
Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1105–1114 (2016)
Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 701–710 (2014)
Perozzi, B., Kulkarni, V., Chen, H., Skiena, S.: Don’t walk, skip! online learning of multi-scale network embeddings. In: International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 258–265 (2017)
Poggi, A., Rodriguez-Muro, M., Ruzzi, M.: Ontology-based database access with DIG-Mastro and the OBDA plugin for protégé. In: OWLED Workshop on OWL (2008)
Pokorný, J.: Database semantics in heterogeneous environment. In: Seminar on Current Trends in Theory and Practice of Informatics (SOFSEM), pp. 125–142 (1996)
Pokorný, J.: Functional querying in graph databases. Vietnam J. Comput. Sci. 5(2), 95–105 (2017)
Pokorný, J.: Integration of relational and NoSQL databases. In: Asian Conference on Intelligent Information and Database Systems (ACIIDS), pp. 35–45 (2018)
Pokorný, J.: Integration of relational and graph databases functionally. Found. Comput. Decis. Sci. 44(4), 427–441 (2019)
Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: International Conference on World Wide Web (WWW), pp. 771–780 (2010)
Prokofyev, R., Demartini, G., Cudré-Mauroux, P.: Effective named entity recognition for idiosyncratic web collections. In: International Conference on World Wide Web (WWW), pp. 397–408 (2014)
Prokofyev, R., Tonon, A., Luggen, M., Vouilloz, L., Difallah, D.E., Cudré-Mauroux, P.: SANAPHOR: ontology-based coreference resolution. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 458–473. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_27
Qodseya, M.: Visual non-verbal social cues data modeling. In: Woo, C., Lu, J., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11158, pp. 82–87. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01391-2_16
Russom, P.: Data lakes: purposes, practices, patterns, and platforms. TDWI white paper (2017)
Scannapieco, M., Batini, C.: Completeness in the relational model: a comprehensive framework. In: International Conference on Information Quality (ICIQ), pp. 333–345 (2004)
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)
Sequeda, J.F., Miranker, D.P.: A pay-as-you-go methodology for ontology-based data access. IEEE Internet Comput. 21(2), 92–96 (2017)
Sequeda, J.F., Briggs, W.J., Miranker, D.P., Heideman, W.P.: A pay-as-you-go methodology to design and build enterprise knowledge graphs from relational databases. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 526–545. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_32
Simitsis, A., Vassiliadis, P., Sellis, T.K.: State-space optimization of ETL workflows. IEEE Trans. Knowl. Data Eng. (TKDE) 17(10), 1404–1419 (2005)
Smirnova, A., Audiffren, J., Cudre-Mauroux, P.: APCNN: tackling class imbalance in relation extraction through aggregated piecewise convolutional neural networks. In: Swiss Conference on Data Science (SDS), pp. 63–68 (2019)
Smirnova, A., Cudré-Mauroux, P.: Relation extraction using distant supervision: a survey. ACM Comput. Surv. 51(5), 106:1–106:35 (2018)
Souza, A.: Lambda architecture - how to build a big data pipeline (2019). https://towardsdatascience.com
Spaccapietra, S., Maryanski, F. (eds.): Data Mining and Reverse Engineering. ITIFIP, Springer, Boston (1998). https://doi.org/10.1007/978-0-387-35300-5
Stanchev, P.L., Smeulders, A.W., Groen, F.C.: An approach to image indexing of documents. In: IFIP TC2/WG 2.6 Working Conference on Visual Database Systems, pp. 63–77 (1991)
Subramanian, A., Pruthi, D., Jhamtani, H., Berg-Kirkpatrick, T., Hovy, E.: Spine: sparse interpretable neural embeddings. In: AAAI Conference on Artificial Intelligence (2018)
Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing across heterogeneous data models: a survey. In: IEEE International Conference on Big Data, pp. 3211–3220 (2017)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: International Conference on World Wide Web (WWW), pp. 1067–1077 (2015)
Tang, L., Liu, H.: Leveraging social media networks for classification. Data Min. Knowl. Disc. 23(3), 447–478 (2011)
Tennant, M., Stahl, F., Rana, O., Gomes, J.B.: Scalable real-time classification of data streams with concept drift. Future Gener. Comput. Syst. 75, 187–199 (2017)
Terrizzano, I., Schwarz, P., Roth, M., Colino, J.E.: Data wrangling: the challenging journey from the wild to the lake. In: Conference on Innovative Data Systems Research (CIDR) (2015)
Theocharidis, A., Van Dongen, S., Enright, A.J., Freeman, T.C.: Network visualization and analysis of gene expression data using BioLayout express 3D. Nature Protocols 4(10), 1535 (2009)
Tonon, A., Catasta, M., Demartini, G., Cudré-Mauroux, P., Aberer, K.: TRank: ranking entity types using the web of data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 640–656. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_40
Tonon, A., Catasta, M., Prokofyev, R., Demartini, G., Aberer, K., Cudre-Mauroux, P.: Contextualized ranking of entity types based on knowledge graphs. J. Web Seman. 37–38, 170–183 (2016)
Tonon, A., Cudré-Mauroux, P., Blarer, A., Lenders, V., Motik, B.: ArmaTweet: detecting events by semantic tweet analysis. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10250, pp. 138–153. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58451-5_10
Tonon, A., Demartini, G., Cudré-Mauroux, P.: Combining inverted indices and structured search for ad-hoc object retrieval. In: Conference on Research and Development in Information Retrieval, pp. 125–134 (2012)
Vaisman, A.A., Zimányi, E.: Data Warehouse Systems - Design and Implementation. Data-Centric Systems and Applications, Springer, Berlin (2014)
Valencia-Parra, Á., Varela-Vaca, Á.J., López, M.T.G., Ceravolo, P.: CHAMALEON: framework to improve data wrangling with complex data. In: International Conference on Information Systems (ICIS) (2019)
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
Vogt, M., Stiemer, A., Schuldt, H.: Polypheny-DB: towards a distributed and self-adaptive polystore. In: IEEE International Conference on Big Data, pp. 3364–3373 (2018)
Vyawahare, H., Karde, P.P., Thakare, V.: A hybrid database approach using graph and relational database. In: IEEE International Conference on Research in Intelligent and Computing in Engineering (RICE), pp. 1–4 (2018)
Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1225–1234 (2016)
Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manage. Inf. Syst. 12(4), 5–33 (1996)
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI Conference on Artificial Intelligence (2014)
Weinberger, K.Q., Sha, F., Saul, L.K.: Learning a kernel matrix for nonlinear dimensionality reduction. In: International Conference on Machine Learning (ICML), p. 106 (2004)
Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Comput. 25(3), 38–49 (1992)
Wrembel, R., Abelló, A., Song, I.: DOLAP data warehouse research over two decades: trends and challenges. Inf. Syst. 85, 44–47 (2019)
Xie, Q., Ma, X., Dai, Z., Hovy, E.: An interpretable knowledge transfer model for knowledge base completion. arXiv:1704.05908 (2017)
Yamamoto, S., Mori, H. (eds.): HIMI 2018. LNCS, vol. 10905. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92046-7
Yang, C., Sun, M., Liu, Z., Tu, C.: Fast network embedding enhancement via high order proximity approximation. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 3894–3900 (2017)
Yue, X., et al.: Graph embedding on biomedical networks: methods, applications and evaluations. Bioinformatics 36(4), 1241–1251 (2020)
Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 353–362 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this chapter
Cite this chapter
Azzini, A. et al. (2021). Advances in Data Management in the Big Data Era. In: Goedicke, M., Neuhold, E., Rannenberg, K. (eds) Advancing Research in Information and Communication Technology. IFIP Advances in Information and Communication Technology(), vol 600. Springer, Cham. https://doi.org/10.1007/978-3-030-81701-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-81701-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81700-8
Online ISBN: 978-3-030-81701-5
eBook Packages: Computer ScienceComputer Science (R0)