Abstract
Although many methods have been developed in social signal processing (SSP) field during the last decade, several issues related to data management and scalability are still emerging. As the existing visual non-verbal behavior analysis (VNBA) systems are task-oriented, they do not have comprehensive data models, and they are biased towards particular data acquisition procedures, social cues and analysis methods. In this paper, we propose a data model for the visual non-verbal cues. The proposed model is privacy-preserving in the sense that it grants decoupling social cues extraction phase from analysis one. Furthermore, this decoupling allows to evaluate and perform different combinations of extraction and analysis methods. Apart from the decoupling, our model can facilitate heterogeneous data fusion from different modalities since it facilitates the retrieval of any combination of different modalities and provides deep insight into the relationships among the VNBA systems components.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Akhtar, Z., Falk, T.: Visual nonverbal behavior analysis: the path forward. In: IEEE MultiMedia (2017)
Vinciarelli, A., et al.: Bridging the gap between social animal and unsocial machine: a survey of social signal processing. IEEE Trans. Affect. Comput. 3, 69–87 (2012)
Cristani, M., Raghavendra, R., Del Bue, A., Murino, V.: Human behavior analysis in video surveillance: a social signal processing perspective. Neurocomputing 100, 86–97 (2013)
Salah, A.A., Pantic, M., Vinciarelli, A.: Recent developments in social signal processing. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 380–385, October 2011
Kukhun, D.A., Codreanu, D., Manzat, A.-M., Sedes, F.: Towards a pervasive access control within video surveillance systems. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 289–303. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40511-2_20
Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: Openface 2.0: facial behavior analysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 59–66 (2018)
Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Qodseya, M. (2018). Visual Non-verbal Social Cues Data Modeling. In: Woo, C., Lu, J., Li, Z., Ling, T., Li, G., Lee, M. (eds) Advances in Conceptual Modeling. ER 2018. Lecture Notes in Computer Science(), vol 11158. Springer, Cham. https://doi.org/10.1007/978-3-030-01391-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-01391-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01390-5
Online ISBN: 978-3-030-01391-2
eBook Packages: Computer ScienceComputer Science (R0)