[go: up one dir, main page]

Skip to main content

Long-Tailed Recognition Using Class-Balanced Experts

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12544))

Included in the following conference series:

  • 1483 Accesses

Abstract

Deep learning enables impressive performance in image recognition using large-scale artificially-balanced datasets. However, real-world datasets exhibit highly class-imbalanced distributions, yielding two main challenges: relative imbalance amongst the classes and data scarcity for mediumshot or fewshot classes. In this work, we address the problem of long-tailed recognition wherein the training set is highly imbalanced and the test set is kept balanced. Differently from existing paradigms relying on data-resampling, cost-sensitive learning, online hard example mining, loss objective reshaping, and/or memory-based modeling, we propose an ensemble of class-balanced experts that combines the strength of diverse classifiers. Our ensemble of class-balanced experts reaches results close to state-of-the-art and an extended ensemble establishes a new state-of-the-art on two benchmarks for long-tailed recognition. We conduct extensive experiments to analyse the performance of the ensembles, and discover that in modern large-scale datasets, relative imbalance is a harder problem than data scarcity. The training and evaluation code is available at https://github.com/ssfootball04/class-balanced-experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, S.: The battle against the long tail. In: Workshop on Big Data and Statistical Machine Learning (2015)

    Google Scholar 

  2. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. JAIR 16, 321–357 (2002)

    Article  Google Scholar 

  3. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR (2019)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  5. Dong, Q., Gong, S., Zhu, X.: Class rectification hard mining for imbalanced deep learning. In: ICCCV (2017)

    Google Scholar 

  6. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20, 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  7. Felix, R., Vijay Kumar, B.G., Reid, I., Carneiro, G.: Multi-modal cycle-consistent generalized zero-shot learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 21–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_2

    Chapter  Google Scholar 

  8. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42, 463–484 (2011)

    Google Scholar 

  9. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: CVPR (2018)

    Google Scholar 

  10. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1321–1330. JMLR. org (2017)

    Google Scholar 

  11. Guo, H., Viktor, H.L.: Learning from imbalanced data sets with boosting and data generation: the databoost-im approach. KDD Explor. Newslett. 6, 30–39 (2004)

    Article  Google Scholar 

  12. Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: ICIC (2005)

    Google Scholar 

  13. He, H., Garcia, E.A.: Learning from imbalanced data. TKDE 21, 1263–1284 (2009)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: Proceedings of International Conference on Learning Representations (2017)

    Google Scholar 

  16. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  17. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  18. Huang, C., Li, Y., Chen, C.L., Tang, X.: Deep imbalanced learning for face recognition and attribute prediction. TPAMI 42, 2781–2794 (2019)

    Google Scholar 

  19. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  20. Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Comparing boosting and bagging techniques with noisy and imbalanced data. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 41, 552–568 (2010)

    Article  Google Scholar 

  21. Krawczyk, B., Woźniak, M., Schaefer, G.: Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 14, 554–562 (2014)

    Article  Google Scholar 

  22. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: 6th International Conference on Learning Representations, ICLR 2018 (2018)

    Google Scholar 

  23. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  24. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR (2019)

    Google Scholar 

  25. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  26. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: CVPR (2016)

    Google Scholar 

  27. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  28. Qi, H., Brown, M., Lowe, D.G.: Low-shot learning with imprinted weights. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5822–5830 (2018)

    Google Scholar 

  29. Qiao, S., Liu, C., Shen, W., Yuille, A.L.: Few-shot image recognition by predicting parameters from activations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7229–7238 (2018)

    Google Scholar 

  30. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurIPS (2017)

    Google Scholar 

  31. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: CVPR (2019)

    Google Scholar 

  32. Van Horn, G., Perona, P.: The devil is in the tails: fine-grained classification in the wild. arXiv preprint arXiv:1709.01450 (2017)

  33. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NIPS (2016)

    Google Scholar 

  34. Wang, B.X., Japkowicz, N.: Boosting support vector machines for imbalanced data sets. Knowl. Inf. Syst. 25, 1–20 (2010)

    Article  Google Scholar 

  35. Wang, S., Yao, X.: Diversity analysis on imbalanced data sets by using ensemble models. In: CIDM (2009)

    Google Scholar 

  36. Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: CVPR (2018)

    Google Scholar 

  37. Wang, Y.-X., Hebert, M.: Learning to learn: model regression networks for easy small sample learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 616–634. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_37

    Chapter  Google Scholar 

  38. Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: NeurIPS (2017)

    Google Scholar 

  39. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

  40. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: CVPR (2018)

    Google Scholar 

  41. Xian, Y., Sharma, S., Schiele, B., Akata, Z.: f-vaegan-d2: a feature generating framework for any-shot learning. In: CVPR (2019)

    Google Scholar 

  42. Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Feature transfer learning for face recognition with under-represented data. In: CVPR (2019)

    Google Scholar 

  43. Yu, N., Shen, X., Lin, Z., Mech, R., Barnes, C.: Learning to detect multiple photographic defects. In: WACV (2018)

    Google Scholar 

  44. Yuksel, S.E., Wilson, J.N., Gader, P.D.: Twenty years of mixture of experts. IEEE Trans. Neural Netw. Learn. Syst. 23(8), 1177–1193 (2012)

    Article  Google Scholar 

  45. Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: ICCV (2017)

    Google Scholar 

  46. Zhong, Y., et al.: Unequal-training for deep face recognition with long-tailed noisy data. In: CVPR (2019)

    Google Scholar 

  47. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. TPAMI 40, 1452–1464 (2017)

    Article  Google Scholar 

  48. Zhu, X., Anguelov, D., Ramanan, D.: Capturing long-tail distributions of object subcategories. In: CVPR (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, S., Yu, N., Fritz, M., Schiele, B. (2021). Long-Tailed Recognition Using Class-Balanced Experts. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71278-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71277-8

  • Online ISBN: 978-3-030-71278-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics