Abstract
Long-tailed image recognition presents massive challenges to deep learning systems since the imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks. Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design, etc. In this work, instead of directly learning a recognition model, we suggest confronting the bottleneck of head-to-tail bias before classifier learning, from the previously omitted perspective of balancing label space. To alleviate the head-to-tail bias, we propose a concise paradigm by progressively adjusting label space and dividing the head classes and tail classes, dynamically constructing balance from imbalance to facilitate the classification. With flexible data filtering and label space mapping, we can easily embed our approach to most classification models, especially the decoupled training methods. Besides, we find the separability of head-tail classes varies among different features with different inductive biases. Hence, our proposed model also provides a feature evaluation method and paves the way for long-tailed feature learning. Extensive experiments show that our method can boost the performance of state-of-the-arts of different types on widely-used benchmarks. Code is available at https://github.com/silicx/DLSA.
Y. Xu and Y.-L. Li—Contributed equally.
C. Lu—Member of Qing Yuan Research Institute and Shanghai Qi Zhi Institute.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)
Byrd, J., Lipton, Z.: What is the effect of importance weighting in deep learning? In: International Conference on Machine Learning, pp. 872–881. PMLR (2019)
Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. arXiv preprint arXiv:1906.07413 (2019)
Chao, Y.W., Wang, Z., He, Y., Wang, J., Deng, J.: HICO: a benchmark for recognizing human-object interactions in images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1017–1025 (2015)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Chou, Hsin-Ping., Chang, Shih-Chieh., Pan, Jia-Yu., Wei, Wei, Juan, Da-Cheng.: Remix: rebalanced mixup. In: Bartoli, Adrien, Fusiello, Andrea (eds.) ECCV 2020. LNCS, vol. 12540, pp. 95–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65414-6_9
Chu, P., Bian, X., Liu, S., Ling, H.: Feature space augmentation for long-tailed data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 694–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_41
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)
Cui, J., Zhong, Z., Liu, S., Yu, B., Jia, J.: Parametric contrastive learning. arXiv preprint arXiv:2107.12028 (2021)
Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech Theory Exp. 2005(09), P09008 (2005)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. arXiv preprint arXiv:1605.08803 (2016)
Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–4375 (2018)
Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5356–5364 (2019)
He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. arXiv preprint arXiv:1911.05722 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, Y.Y., Wu, J., Wei, X.S.: Distilling virtual examples for long-tailed recognition. arXiv preprint arXiv:2103.15042 (2021)
Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning deep representation for imbalanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5375–5384 (2016)
Huang, C., Li, Y., Loy, C.C., Tang, X.: Deep imbalanced learning for face recognition and attribute prediction. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2781–2794 (2019)
Izmailov, P., Kirichenko, P., Finzi, M., Wilson, A.G.: Semi-supervised learning with normalizing flows. In: International Conference on Machine Learning, pp. 4615–4630. PMLR (2020)
Jamal, M.A., Brown, M., Yang, M.H., Wang, L., Gong, B.: Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7610–7619 (2020)
Jamal, M.A., Brown, M., Yang, M.H., Wang, L., Gong, B.: Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7610–7619 (2020)
Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)
Jiang, Z., Chen, T., Mortazavi, B., Wang, Z.: Self-damaging contrastive learning. arXiv preprint arXiv:2106.02990 (2021)
Kang, B., Li, Y., Xie, S., Yuan, Z., Feng, J.: Exploring balanced feature spaces for representation learning. In: International Conference on Learning Representations (2020)
Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., Kalantidis, Y.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)
Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Statist. 23(3), 462–466 (1952)
Kim, B., Kim, J.: Adjusting decision boundary for class imbalanced learning. IEEE Access 8, 81674–81685 (2020)
Kim, J., Jeong, J., Shin, J.: M2m: imbalanced classification via major-to-minor translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13896–13905 (2020)
Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. Adv. Neural. Inf. Process. Syst. 29, 4743–4751 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)
Li, S., Gong, K., Liu, C.H., Wang, Y., Qiao, F., Cheng, X.: MetaSAug: meta semantic augmentation for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5212–5221 (2021)
Li, Y.L., et al.: Hake: a knowledge engine foundation for human activity understanding. arXiv preprint arXiv:2202.06851 (2022)
Li, Y.L., et al.: PaStaNet: toward human activity knowledge engine. In: CVPR (2020)
Li, Y.L., Xu, Y., Mao, X., Lu, C.: Symmetry and group in attribute-object compositions. In: CVPR (2020)
Li, Y.L., et al.: Transferable interactiveness knowledge for human-object interaction detection. In: CVPR (2019)
Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)
Matthews, B.W.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405(2), 442–451 (1975)
Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314 (2020)
Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Papamakarios, G., Pavlakou, T., Murray, I.: Masked autoregressive flow for density estimation. arXiv preprint arXiv:1705.07057 (2017)
Qi, H., Brown, M., Lowe, D.G.: Low-shot learning with imprinted weights. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5822–5830 (2018)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Ren, J., et al.: Balanced meta-softmax for long-tailed visual recognition. arXiv preprint arXiv:2007.10740 (2020)
Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International conference on machine learning, pp. 1530–1538. PMLR (2015)
Samuel, D., Atzmon, Y., Chechik, G.: From generalized zero-shot learning to long-tail with class descriptors. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 286–295 (2021)
Samuel, D., Atzmon, Y., Chechik, G.: From generalized zero-shot learning to long-tail with class descriptors. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 286–295 (2021)
Samuel, D., Chechik, G.: Distributional robustness loss for long-tail learning. arXiv preprint arXiv:2104.03066 (2021)
Samuel, D., Chechik, G.: Distributional robustness loss for long-tail learning. arXiv preprint arXiv:2104.03066 (2021)
Shen, Li., Lin, Zhouchen, Huang, Qingming: Relay backpropagation for effective learning of deep convolutional neural networks. In: Leibe, Bastian, Matas, Jiri, Sebe, Nicu, Welling, Max (eds.) ECCV 2016. LNCS, vol. 9911, pp. 467–482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_29
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sinha, S., Ohashi, H., Nakamura, K.: Class-wise difficulty-balanced loss for solving class-imbalance. In: Proceedings of the Asian Conference on Computer Vision (2020)
Spain, M., Perona, P.: Measuring and predicting importance of objects in our visual world (2007)
Van Horn, G., et al.: The inaturalist species classification and detection dataset. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769–8778 (2018)
Wang, J., Lukasiewicz, T., Hu, X., Cai, J., Xu, Z.: Rsg: A simple but effective module for learning imbalanced datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3784–3793 (2021)
Wang, P., Han, K., Wei, X.S., Zhang, L., Wang, L.: Contrastive learning based hybrid networks for long-tailed image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 943–952 (2021)
Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S.X.: Long-tailed recognition by routing diverse distribution-aware experts. arXiv preprint arXiv:2010.01809 (2020)
Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 7032–7042 (2017)
Wu, Tz-Ying., Morgado, Pedro, Wang, Pei, Ho, Chih-Hui., Vasconcelos, Nuno: Solving long-tailed recognition with deep realistic taxonomic classifier. In: Vedaldi, Andrea, Bischof, Horst, Brox, Thomas, Frahm, Jan-Michael. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 171–189. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_11
Xiang, Liuyu, Ding, Guiguang, Han, Jungong: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, Andrea, Bischof, Horst, Brox, Thomas, Frahm, Jan-Michael. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_15
Yang, Y., Xu, Z.: Rethinking the value of labels for improving class-imbalanced learning. arXiv preprint arXiv:2006.07529 (2020)
Zhang, S., Chen, C., Hu, X., Peng, S.: Balanced knowledge distillation for long-tailed learning. arXiv preprint arXiv:2104.10510 (2021)
Zhang, S., Li, Z., Yan, S., He, X., Sun, J.: Distribution alignment: a unified framework for long-tail visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2361–2370 (2021)
Zhang, Z., Pfister, T.: Learning fast sample re-weighting without reward data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 725–734 (2021)
Zhong, Z., Cui, J., Liu, S., Jia, J.: Improving calibration for long-tailed recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16489–16498 (2021)
Zhong, Z., Cui, J., Liu, S., Jia, J.: Improving calibration for long-tailed recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16489–16498 (2021)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)
Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9719–9728 (2020)
Zipf, G.K.: The psycho-biology of language: an introduction to dynamic philology. Routledge (2013)
Acknowledgement
This work was supported by the National Key R &D Program of China (No. 2021ZD0110700), Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102), Shanghai Qi Zhi Institute, and SHEITC (2018-RGZN-02046).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, Y., Li, YL., Li, J., Lu, C. (2022). Constructing Balance from Imbalance for Long-Tailed Image Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13680. Springer, Cham. https://doi.org/10.1007/978-3-031-20044-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-20044-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20043-4
Online ISBN: 978-3-031-20044-1
eBook Packages: Computer ScienceComputer Science (R0)