Abstract
Important factors for the easy usage of an Evolutionary Algorithm (EA) are numbers of fitness calculations as low as possible, its robustness, and the reduction of its strategy parameters as far as possible. Multimeme Algorithms (MMA) are good candidates for the first two properties. In this paper a cost-benefit-based approach shall be introduced for the adaptive control of both meme selection and the ratio between local and global search. The latter is achieved by adaptively adjusting the intensity of the search of the memes and the frequency of their usage. It will be shown in which way the proposed kind of adaptation fills the gap previous work leaves. Detailed experiments in the field of continuous parameter optimisation demonstrate the superiority of the adaptive MMA over the simple MA and the pure EA.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Grefenstette, J.J.: Optimization of Control Parameters for Genetic Algorithms. IEEE Transactions on Systems, Man, and Cybernetics 16(1), 122–128 (1986)
Srinivas, M., Patnaik, L.M.: Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms. IEEE Trans. on Systems, Man, and Cybernetics 24(4), 17–26 (1994)
Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms. IEEE Trans. on Evolutionary Computation 3(2), 124–141 (1999)
Davis, L.L. (ed.): Handbook of Genetic Algorithms. Van Nostrand Reinhold, NY (1991)
Hart, W.E., Krasnogor, N., Smith, J.E. (eds.): Recent Advances in Memetic Algorithms. Studies in Fuzziness and Soft Computing, vol. 166. Springer, Berlin (2005)
Jakob, W.: HyGLEAM – An Approach to Generally Applicable Hybridization of Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 527–536. Springer, Heidelberg (2002)
Jakob, W.: A New Method for the Increased Performance of Evolutionary Algorithms by the Integration of Local Search Procedures. In German, PhD thesis, Univ. of Karlsruhe, FZKA 6965 (March 2004), see also: http://www.iai.fzk.de/~jakob/HyGLEAM/main-gb.html
Lienig, J., Brandt, H.: An Evolutionary Algorithm for the Routing of Multi Chip Modules. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 588–597. Springer, Heidelberg (1994)
Cox, J.L.A., Davis, L., Oiu, Y.: Dynamic Anticipatory Routing in Circuit Switches Telecommunications Networks. In: [4], 124–143 (1991)
Krasnogor, N., Smith, J.E.: A Tutorial for Competent Memetic Algorithms: Model, Taxonomy, and Design Isssues. IEEE Trans. on Evol. Comp. 9(5), 474–488 (2005)
Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts Towards Memetic Algorithms. Tech. rep. Caltech Concurrent Computation Program, Rep. 826, California Inst. Technol., Pasadena, CA (1989)
Hart, W.E.: Adaptive Global Optimization with Local Search. PhD thesis, University of California, San Diego, CA, USA (1994)
Krasnogor, N.: Studies on the Theory and Design Space of Memetic Algorithms. PhD thesis, Faculty Comput., Math. and Eng., Univ. West of England, Bristol, U.K (2002)
Ong, Y.S., Keane, A.J.: Meta-Lamarckian Learning in Memetic Algorithms. IEEE Trans. on Evolutionary Computation 8(2), 99–110 (2004) citation: p. 100
Krasnogor, N., Smith, J.E.: Emergence of Profitable Search Strategies Based on a Simple Inheritance Algorithm. In: Conf. Proc. GECCO 2001, pp. 432–439. M. Kaufmann, S. Francisco (2001)
Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in Evolutionary Computation: A Survey. In: Conf. Proc. IEEE Conf. on Evol. Comp (CEC 1997), pp. 65–69. IEEE press, Los Alamitos (1997)
Goldberg, D.E., Voessner, S.: Optimizing Global-Local Search Hybrids. In: Conf. Proc. GECCO 1999, pp. 220–228. Morgan Kaufmann, San Mateo (1999)
Shina, A., Chen, Y., Goldberg, D.E.: Designing Efficient Genetic and Evolutionary Algorithm Hybrids. In: [5], 259–288 (2005)
Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-Coded Memetic Algorithms with Crossover Hill-Climbing. Evolutionary Computation Journal 12(2), 273–302 (2004)
Zitzler, E., Teich, J., Bhattacharyya, S.S.: Optimizing the Efficiency of Parameterized Local Search within Global Search: A Preliminary Study. In: Conf. Proc. CEC 2000, pp. 365–372. IEEE press, Piscataway (2000)
Bambha, N.K., Bhattacharyya, S.S., Zitzler, E., Teich, J.: Systematic Integration of Parameterized Local Search into Evolutionary Algorithms. IEEE Trans. on Evolutionary Computation 8(2), 137–155 (2004)
Jakob, W., Blume, C., Bretthauer, G.: Towards a Generally Applicable Self-Adapting Hybridization of Evolutionary Algorithms. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 790–791. Springer, Heidelberg (2004)
Smith, J.E.: Co-evolving Memetic Algorithms: A learning approach to robust scalable optimisation. In: Conf. Proc. CEC 2003, pp. 498–505. IEEE press, Piscataway (2003)
Krasnogor, N., Blackburne, B.P., Burke, E.K., Hirst, J.D.: Multimeme Algorithms for Protein Structure Prediction. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 769–778. Springer, Heidelberg (2002)
Schwefel, H.-P.: Evolution and Optimum Seeking. John Wiley & Sons, New York (1995)
Blume, C., Jakob, W.: GLEAM – An Evolutionary Algorithm for Planning and Control Based on Evolution Strategy. In: Cantú-Paz, E. (ed.) GECCO 2002, vol. Late Breaking Papers, pp. 31–38 (2002)
Gorges-Schleuter, M.: Genetic Algorithms and Population Structures - A Massively Parallel Algorithm. Dissertation, Dept. Comp. Science, University of Dortmund (1990)
Bäck, T.: GENEsYs 1.0 (1992), ftp://lumpi.informatik.uni-dortmund.de/pub/GA/
Sieber, I., Eggert, H., Guth, H., Jakob, W.: Design Simulation and Optimization of Microoptical Components. In: Bell, K.D., et al. (eds.) Proceedings of Novel Optical Systems and Large-Aperture Imaging. SPIE, vol. 3430, pp. 138–149 (1998)
Blume, C., Gerbe, M.: Deutliche Senkung der Produktionskosten durch Optimierung des Ressourceneinsatzes. atp 36, 5/94 (in German), Oldenbourg Verlag, München, pp. 25–29 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jakob, W. (2006). Towards an Adaptive Multimeme Algorithm for Parameter Optimisation Suiting the Engineers’ Needs. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_14
Download citation
DOI: https://doi.org/10.1007/11844297_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38990-3
Online ISBN: 978-3-540-38991-0
eBook Packages: Computer ScienceComputer Science (R0)