Abstract
An Active Robust Optimisation Problem (AROP) aims at finding robust adaptable solutions, i.e. solutions that actively gain robustness to environmental changes through adaptation. Existing AROP studies have considered only a single performance objective. This study extends the Active Robust Optimisation methodology to deal with problems with more than one objective. Once multiple objectives are considered, the optimal performance for every uncertain parameter setting is a set of configurations, offering different trade-offs between the objectives. To evaluate and compare solutions to this type of problems, we suggest a robustness indicator that uses a scalarising function combining the main aims of multi-objective optimisation: proximity, diversity and pertinence. The Active Robust Multi-objective Optimisation Problem is formulated in this study, and an evolutionary algorithm that uses the hypervolume measure as a scalarasing function is suggested in order to solve it. Proof-of-concept results are demonstrated using a simplified gearbox optimisation problem for an uncertain load demand.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Salomon, S., Avigad, G., Fleming, P.J., Purshouse, R.C.: Active Robust Optimization - Enhancing Robustness to Uncertain Environments. IEEE Transactions on Cybernetics 44(11), 2221–2231 (2014)
Beyer, H.G., Sendhoff, B.: Robust Optimization - A Comprehensive Survey. Computer Methods in Applied Mechanics and Engineering 196(33–34), 3190–3218 (2007)
Branke, J., Rosenbusch, J.: New approaches to coevolutionary worst-case optimization. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199, pp. 144–153. Springer, Heidelberg (2008)
Avigad, G., Coello, C.A.: Highly Reliable Optimal Solutions to Multi-Objective Problems and Their Evolution by Means of Worst-Case Analysis. Engineering Optimization 42(12), 1095–1117 (2010)
Alicino, S., Vasile, M.: An evolutionary approach to the solution of multi-objective min-max problems in evidence-based robust optimization. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1179–1186 (2014)
Teich, J.: Pareto-front exploration with uncertain objectives. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001)
Hughes, E.J.: Evolutionary multi-objective ranking with uncertainty and noise. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001)
Deb, K., Gupta, H.: Introducing Robustness in Multi-Objective Optimization. Evolutionary Computation 14(4), 463–494 (2006)
Saha, A., Ray, T.: Practical Robust Design Optimization Using Evolutionary Algorithms. Journal of Mechanical Design 133(10), 101012 (2011)
Beyer, H.G., Sendhoff, B.: Functions with noise-induced multimodality: a test for evolutionary robust Optimization-properties and performance analysis. IEEE Transactions on Evolutionary Computation 10(5), 507–526 (2006)
Fieldsend, J.E., Everson, R.M.: Multi-objective optimisation in the presence of uncertainty. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 243–250 (2005)
Bui, L.T., Abbass, H.A., Essam, D.: Fitness inheritance for noisy evolutionary multi-objective optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 779–785, New York. ACM (2005)
Goh, C.K., Tan, K.C.: An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation 11(3), 354–381 (2007)
Knowles, J., Corne, D., Reynolds, A.: Noisy multiobjective optimization on a budget of 250 evaluations. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 36–50. Springer, Heidelberg (2009)
Fieldsend, J.E., Everson, R.M.: The Rolling Tide Evolutionary Algorithm: A Multi-Objective Optimiser for Noisy Optimisation Problems. IEEE Transactions on Evolutionary Computation PP(99), 1 (2014)
Paenke, I., Branke, J., Jin, Y.: Efficient Search for Robust Solutions by Means of Evolutionary Algorithms and Fitness Approximation. IEEE Transactions on Evolutionary Computation 10(4), 405–420 (2006)
Cruz, C., González, J.R., Pelta, D.A.: Optimization in Dynamic Environments: A Survey on Problems, Methods and Measures. Soft Computing 15(7), 1427–1448 (2011)
Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-objective optimization: an engineering design perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005)
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Phd dissertation, Swiss Federal Institute of Technology Zurich (1999)
Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, pp. 711–716. IEEE (2002)
Krishnan, R.: Electric Motor Drives - Modeling, Analysis, And Control. Prentice Hall (2001)
Salomon, S., Avigad, G., Goldvard, A., Schütze, O.: PSA – a new scalable space partition based selection algorithm for MOEAs. In: Schütze, O., Coello Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge between Probability. AISC, vol. 175, pp. 137–151. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Salomon, S., Purshouse, R.C., Avigad, G., Fleming, P.J. (2015). An Evolutionary Approach to Active Robust Multiobjective Optimisation. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9019. Springer, Cham. https://doi.org/10.1007/978-3-319-15892-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-15892-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15891-4
Online ISBN: 978-3-319-15892-1
eBook Packages: Computer ScienceComputer Science (R0)