[go: up one dir, main page]

Skip to main content

Lower Bounds for Geometric Diameter Problems

  • Conference paper
LATIN 2006: Theoretical Informatics (LATIN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3887))

Included in the following conference series:

  • 1042 Accesses

Abstract

The diameter of a set P of n points in \({\mathbb R}^d\) is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3–dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is smaller than 1 requires Ω(n log n) time in the algebraic computation tree model. It shows that the O(n log n) time algorithm of Ramos for computing the diameter of a point set in \({\mathbb R}^3\) is optimal for computing the diameter of a 3–polytope. We also give a linear time reduction from Hopcroft’s problem of finding an incidence between points and lines in \({\mathbb R}^2\) to the diameter problem for a point set in \({\mathbb R}^7\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P., Matoušek, J., Suri, S.: Farthest neighbors, maximum spanning trees and related problems in higher dimensions. Computational Geometry: Theory and Applications 1(4), 189–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pp. 80–86 (1983)

    Google Scholar 

  3. Bespamyatnikh, S.: An efficient algorithm for the three-dimensional diameter problem. Discrete and Computational Geometry 25(2), 235–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  5. Chan, T.: Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. International Journal of Computational Geometry and Applications 12(1–2), 67–85 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheong, O., Shin, C., Vigneron, A.: Computing farthest neighbors on a convex polytope. Theoretical Computer Science 296(1), 47–58 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarkson, K., Shor, P.: Applications of random sampling in computational geometry, II. Discrete and Computational Geometry 4, 387–421 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  10. Erickson, J.: On the relative complexities of some geometric problems. In: Proceedings of the 7th Canadian Conference on Computational Geometry, pp. 85–90 (1995)

    Google Scholar 

  11. Erickson, J.: New lower bounds for Hopcroft’s problem. Discrete and Computational Geometry 16, 389–418 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Har-Peled, S.: A practical approach for computing the diameter of a point set. In: Proceedings of the Seventeenth Annual Symposium on Computational Geometry, June 3–5, pp. 177–186. ACM Press, New York (2001)

    Chapter  Google Scholar 

  13. Malandain, G., Boissonnat, J.-D.: Computing the diameter of a point set. International Journal of Computational Geometry and Applications 12(6), 489–510 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Matoušek, J.: Range searching with efficient hierarchical cuttings. Discrete and Computational Geometry 10(2), 157–182 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matoušek, J., Schwarzkopf, O.: On ray shooting in convex polytopes. Discrete and Computational Geometry 10(2), 215–232 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Preparata, F., Shamos, I.: Computational geometry: An introduction, 2nd edn. Texts and Monographs in Computer Science. Springer, New York (1985)

    Book  MATH  Google Scholar 

  17. Ramos, E.: An optimal deterministic algorithm for computing the diameter of a three-dimensional point set. Discrete and Computational Geometry 26, 233–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fournier, H., Vigneron, A. (2006). Lower Bounds for Geometric Diameter Problems. In: Correa, J.R., Hevia, A., Kiwi, M. (eds) LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer Science, vol 3887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11682462_44

Download citation

  • DOI: https://doi.org/10.1007/11682462_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32755-4

  • Online ISBN: 978-3-540-32756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics