[go: up one dir, main page]

Skip to main content

Bounding the Number of Minimal Dominating Sets: A Measure and Conquer Approach

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

We show that the number of minimal dominating sets in a graph on n vertices is at most 1.7697n, thus improving on the trivial \(\mathcal{O}(2^{n}/\sqrt{n})\) bound. Our result makes use of the measure and conquer technique from exact algorithms, and can be easily turned into an \(\mathcal{O}(1.7697^{n})\) listing algorithm.

Based on this result, we derive an \(\mathcal{O}(2.8805^{n})\) algorithm for the domatic number problem, and an \(\mathcal{O}(1.5780^{n})\) algorithm for the minimum-weight dominating set problem. Both algorithms improve over the previous algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beigel, R.: Finding maximum independent sets in sparse and general graphs. In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 856–857. ACM and SIAM (1999)

    Google Scholar 

  2. Brègman, L.M.: Certain properties of nonnegative matrices and their permanents. Doklady Akademii Nauk BSSR 211, 27–30 (1973)

    Google Scholar 

  3. Byskov, M., Eppstein, D.: An algorithm for enumerating maximal bipartite subgraphs (manuscript 2004)

    Google Scholar 

  4. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic \((2-2/(k+1))\sp n\) algorithm for k-SAT based on local search. Theoretical Computer Science 289, 69–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Edmonds, J., Johnson, E.L.: Matching: A well-solved class of integer linear programs. In: Combinatorial Structures and their Applications, pp. 89–92. Gordon and Breach, New York (1970)

    Google Scholar 

  6. Egorychev, G.P.: Proof of the van der Waerden conjecture for permanents. Sibirsk. Mat. Zh. 22, 65–71, 225 (1981)

    MATH  MathSciNet  Google Scholar 

  7. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. Journal of Graph Algorithms and Applications 7, 131–140 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 781–790. ACM and SIAM (2004)

    Google Scholar 

  9. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination – a case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Fomin, F.V., Kratsch, D., Todinca, I.: Exact algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Grandoni, F.: Exact algorithms for hard graph problems. PhD thesis, Università di Roma “Tor Vergata”, Roma, Italy (March 2004)

    Google Scholar 

  13. Grandoni, F.: A note on the complexity of minimum dominating set. Journal of Discrete Algorithms (to appear)

    Google Scholar 

  14. Haynes, T.W., Hedetniemi, S.T. (eds.): Domination in graphs. Marcel Dekker Inc., New York (1998)

    Google Scholar 

  15. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of SIAM 10, 196–210 (1962)

    MATH  MathSciNet  Google Scholar 

  16. Iwama, J., Tamaki, S.: Improved upper bounds for 3-sat. In: 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), p. 328. ACM and SIAM (2004)

    Google Scholar 

  17. Lawler, E.L.: A note on the complexity of the chromatic number problem. Information Processing Lett. 5, 66–67 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3, 23–28 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  19. Randerath, B., Schiermeyer, I.: Exact algorithms for MINIMUM DOMINATING SET, Technical Report zaik-469, Zentrum für Angewandte Informatik Köln, Germany (2004)

    Google Scholar 

  20. Reige, T., Rothe, J.: An exact 2.9416n algorithm for the three domatic number problem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 733–744. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM Journal on Computing 6, 537–546 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. van der Waerden, B.: Problem 45. Jahresber. Deutsch. Math.-Verein. 35, 117 (1926)

    Google Scholar 

  23. Woeginger, G.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A. (2005). Bounding the Number of Minimal Dominating Sets: A Measure and Conquer Approach. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_58

Download citation

  • DOI: https://doi.org/10.1007/11602613_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics