[go: up one dir, main page]

Skip to main content

Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In

  • Conference paper
Automata, Languages and Programming (ICALP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Included in the following conference series:

Abstract

We show that for a graph G on n vertices its treewidth and minimum fill-in can be computed roughly in 1.9601n time. Our result is based on a combinatorial proof that the number of minimal separators in a graph is \(\mathcal O(n \cdot 1.7087^n)\) and that the number of potential maximal cliques s is \(\mathcal O(n^4 \cdot 1.9601^n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth Conference (UAI 2001), San Francisco, CA, pp. 7–15. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berry, A., Bordat, J.P., Cogis, O.: Generating all the minimal separators of a graph. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, p. 167. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bodlaender, H.L., Fomin, F.V.: Tree decompositions with small cost. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 378–387. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. on Computing 31(1), 212–232 (2001)

    Article  MATH  Google Scholar 

  8. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theoretical Computer Science 276(1-2), 17–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bouchitté, V., Kratsch, D., Müller, H., Todinca, I.: On treewidth approximation. Discr. Appl. Math. (to appear)

    Google Scholar 

  10. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inform. Process. Lett. 58, 171–176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS J. on Computing 15(3), 233–248 (2003)

    Article  MathSciNet  Google Scholar 

  12. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2−2/(k+1))n algorithm for k-SAT based on local search. Theoret. Comput. Sci. 289, 69–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    Google Scholar 

  14. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 462–470. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Feige, U.: Coping with the NP-hardness of the graph bandwidth problem. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 10–19. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Fomin, F., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in, Research Report RR-2004-09, LIFO–University of Orléans (2004)

    Google Scholar 

  17. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  18. Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. Soc. Indust. Appl. Math. 10, 196–210 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28, 1906–1922 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal triple-free graphs. Theoretical Computer Science 175, 309–335 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Appl. Math. 79(1-3), 171–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52, 153–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods 2, 77–79 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Kratsch, D., Todinca, I. (2004). Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics