where Aβ+1β=1, Aβ+2β=Ξ·/(β+1), and
or in terms of the hypergeometric function (§§15.1, 15.2(i)),
Reported 2018-05-15 by Ian Thompson
where a=1+βΒ±iβ’Ξ· and Οβ‘(x)=Ξβ²β‘(x)/Ξβ‘(x) (Β§5.2(i)).
The series (33.6.1), (33.6.2), and (33.6.5) converge for all finite values of Ο. Corresponding expansions for HβΒ±β²β‘(Ξ·,Ο) can be obtained by combining (33.6.5) with (33.4.3) or (33.4.4).