Throughout this subsection .
25.5.1 | ||||
. | ||||
ⓘ
| ||||
25.5.2 | ||||
. | ||||
ⓘ
|
25.5.3 | ||||
. | ||||
ⓘ
| ||||
25.5.4 | ||||
. | ||||
ⓘ
|
25.5.5 | |||
. | |||
ⓘ
|
25.5.6 | |||
. | |||
ⓘ
|
25.5.7 | |||
, . | |||
ⓘ
|
25.5.8 | ||||
. | ||||
ⓘ
| ||||
25.5.9 | ||||
. | ||||
ⓘ
|
25.5.10 | |||
ⓘ
|
25.5.11 | |||
ⓘ
|
25.5.12 | |||
ⓘ
|
25.5.13 | |||
, | |||
ⓘ
|
where
25.5.14 | |||
ⓘ
|
For see §20.2(i). For similar representations involving other theta functions see Erdélyi et al. (1954a, p. 339).
In (25.5.15)–(25.5.19), , is the digamma function, and is Euler’s constant (§5.2). (25.5.16) is also valid for , .
25.5.15 | |||
ⓘ
|
25.5.16 | ||||
ⓘ
| ||||
25.5.17 | ||||
ⓘ
|
25.5.18 | ||||
ⓘ
| ||||
25.5.19 | ||||
. | ||||
ⓘ
|
25.5.20 | |||
, | |||
ⓘ
|
where the integration contour is a loop around the negative real axis; it starts at , encircles the origin once in the positive direction without enclosing any of the points , , …, and returns to . Equivalently,
25.5.21 | |||
. | |||
ⓘ
|
The contour here is any loop that encircles the origin in the positive direction not enclosing any of the points , , …. For the contour of integration in (25.5.20) and (25.5.21) see Figure 5.9.1.