G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris (1994)Detection of the density matrix through optical homodyne tomography without filtered back projection.
Phys. Rev. A50 (5), pp. 4298–4302.
D. Dai, M. E. H. Ismail, and X. Wang (2014)Plancherel-Rotach asymptotic expansion for some polynomials from indeterminate moment problems.
Constr. Approx.40 (1), pp. 61–104.
P. J. Davis and P. Rabinowitz (1984)Methods of Numerical Integration.
2nd edition, Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL.
M. G. de Bruin, E. B. Saff, and R. S. Varga (1981a)On the zeros of generalized Bessel polynomials. I.
Nederl. Akad. Wetensch. Indag. Math.84 (1), pp. 1–13.
M. G. de Bruin, E. B. Saff, and R. S. Varga (1981b)On the zeros of generalized Bessel polynomials. II.
Nederl. Akad. Wetensch. Indag. Math.84 (1), pp. 14–25.
C. de la Vallée Poussin (1896a)Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann.
Ann. Soc. Sci. Bruxelles20, pp. 183–256 (French).
ⓘ
Notes:
Reprinted in Collected works/Oeuvres scientifiques,
Vol. I, pp. 223–296 Académie Royale de Belgique,
Brussels, 2000.
C. de la Vallée Poussin (1896b)Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire .
Ann. Soc. Sci. Bruxelles20, pp. 281–397 (French).
ⓘ
Notes:
Reprinted in Collected works/Oeuvres scientifiques,
Vol. I, pp. 309–425, Académie Royale de Belgique,
Brussels, 2000.
A. Deaño, E. J. Huertas, and F. Marcellán (2013)Strong and ratio asymptotics for Laguerre polynomials revisited.
J. Math. Anal. Appl.403 (2), pp. 477–486.
A. Deaño, J. Segura, and N. M. Temme (2010)Computational properties of three-term recurrence relations for Kummer functions.
J. Comput. Appl. Math.233 (6), pp. 1505–1510.
A. Debosscher (1998)Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes.
Phys. Rev. E (3)57 (1), pp. 252–275.
A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a)Formes canoniques des équations confluentes de l’équation de Heun.
Ann. Soc. Sci. Bruxelles Sér. I92 (1-2), pp. 53–78.
P. A. Deift (1998)Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach.
Courant Lecture Notes in Mathematics, Vol. 3, New York University Courant Institute of Mathematical
Sciences, New York.
P. Deift, T. Kriecherbauer, K. T. McLaughlin, S. Venakides, and X. Zhou (1999a)Strong asymptotics of orthogonal polynomials with respect to exponential weights.
Comm. Pure Appl. Math.52 (12), pp. 1491–1552.
P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou (1999b)Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory.
Comm. Pure Appl. Math.52 (11), pp. 1335–1425.
K. Dekker and J. G. Verwer (1984)Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations.
CWI Monographs, Vol. 2, North-Holland Publishing Co., Amsterdam.
P. Deligne, P. Etingof, D. S. Freed, D. Kazhdan, J. W. Morgan, and D. R. Morrison (Eds.) (1999)Quantum Fields and Strings: A Course for Mathematicians. Vol. 1, 2.
American Mathematical Society, Providence, RI.
ⓘ
Notes:
Material from the Special Year on Quantum Field Theory held at
the Institute for Advanced Study, Princeton, NJ, 1996–1997
A. R. DiDonato and A. H. Morris (1986)Computation of the incomplete gamma function ratios and their inverses.
ACM Trans. Math. Software12 (4), pp. 377–393.
A. R. DiDonato and A. H. Morris (1987)Algorithm 654: Fortran subroutines for computing the incomplete gamma function ratios and their inverses.
ACM Trans. Math. Software13 (3), pp. 318–319.
A. R. DiDonato and A. H. Morris (1992)Algorithm 708: Significant digit computation of the incomplete beta function ratios.
ACM Trans. Math. Software18 (3), pp. 360–373.
K. Dilcher, L. Skula, and I. Sh. Slavutskiǐ (1991)Bernoulli Numbers. Bibliography (1713–1990).
Queen’s Papers in Pure and Applied Mathematics, Vol. 87, Queen’s University, Kingston, ON.
ⓘ
Notes:
A frequently updated version, with links to reviews, exists online
K. Dilcher (1987b)Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters.
J. Number Theory25 (1), pp. 72–80.
D. K. Dimitrov and G. P. Nikolov (2010)Sharp bounds for the extreme zeros of classical orthogonal polynomials.
J. Approx. Theory162 (10), pp. 1793–1804.
P. G. L. Dirichlet (1837)Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält.
Abhandlungen der Königlich Preussischen Akademie der
Wissenschaften von 1837, pp. 45–81 (German).
ⓘ
Notes:
Reprinted in G. Lejeune Dirichlet’s Werke, Band I,
pp. 313–342, Reimer, Berlin, 1889 and with corrections in
G. Lejeune Dirichlet’s Werke, AMS Chelsea Publishing Series,
Providence, RI, 1969.
P. G. L. Dirichlet (1849)Über die Bestimmung der mittleren Werthe in der Zahlentheorie.
Abhandlungen der Königlich Preussischen Akademie der
Wissenschaften von 1849, pp. 69–83 (German).
ⓘ
Notes:
Reprinted in G. Lejeune Dirichlet’s Werke, Band II,
pp. 49–66, Reimer, Berlin, 1897 and with corrections in
G. Lejeune Dirichlet’s Werke, AMS Chelsea Publishing Series,
Providence, RI, 1969.
J. M. Dixon, J. A. Tuszyński, and P. A. Clarkson (1997)From Nonlinearity to Coherence: Universal Features of Nonlinear Behaviour in Many-Body Physics.
Oxford University Press, Oxford.
G. Doetsch (1955)Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung.
Birkhäuser Verlag, Basel und Stuttgart (German).
G. C. Donovan, J. S. Geronimo, and D. P. Hardin (1999)Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets.
SIAM J. Math. Anal.30 (5), pp. 1029–1056.
O. Dragoun and G. Heuser (1971)A program to calculate internal conversion coefficients for all atomic shells without screening.
Comput. Phys. Comm.2 (7), pp. 427–432.
K. Driver and K. Jordaan (2013)Inequalities for extreme zeros of some classical orthogonal and -orthogonal polynomials.
Math. Model. Nat. Phenom.8 (1), pp. 48–59.
D. Dumont and G. Viennot (1980)A combinatorial interpretation of the Seidel generation of Genocchi numbers.
Ann. Discrete Math.6, pp. 77–87.
ⓘ
Notes:
Combinatorial mathematics, optimal designs and their
applications (Proc. Sympos. Combin. Math. and Optimal Design,
Colorado State Univ., Fort Collins, Colo., 1978)
N. Dunford and J. T. Schwartz (1988)Linear operators. Part II.
Wiley Classics Library, John Wiley & Sons, Inc., New York.
ⓘ
Notes:
Spectral theory. Selfadjoint operators in Hilbert space,
With the assistance of William G. Bade and Robert G. Bartle,
Reprint of the 1963 original,
A Wiley-Interscience Publication
C. F. Dunkl and Y. Xu (2001)Orthogonal Polynomials of Several Variables.
Encyclopedia of Mathematics and its Applications, Vol. 81, Cambridge University Press, Cambridge.
T. M. Dunster, D. A. Lutz, and R. Schäfke (1993)Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions.
Proc. Roy. Soc. London Ser. A440, pp. 37–54.
T. M. Dunster, R. B. Paris, and S. Cang (1998)On the high-order coefficients in the uniform asymptotic expansion for the incomplete gamma function.
Methods Appl. Anal.5 (3), pp. 223–247.
T. M. Dunster (1990a)Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter.
SIAM J. Math. Anal.21 (4), pp. 995–1018.
ⓘ
Notes:
Errata: In eq. (2.8) replace by .
In eq. (4.2) should be replaced by .
In the second line of eq. (4.7) insert an external factor
and change the upper limit of the sum
to .
In eq. (4.15) the factor is missing from the arguments
of the functions Biν and Bi’ν.
T. M. Dunster (1990b)Uniform asymptotic solutions of second-order linear differential equations having a double pole with complex exponent and a coalescing turning point.
SIAM J. Math. Anal.21 (6), pp. 1594–1618.
T. M. Dunster (1992)Uniform asymptotic expansions for oblate spheroidal functions I: Positive separation parameter .
Proc. Roy. Soc. Edinburgh Sect. A121 (3-4), pp. 303–320.
T. M. Dunster (1994b)Uniform asymptotic solutions of second-order linear differential equations having a simple pole and a coalescing turning point in the complex plane.
SIAM J. Math. Anal.25 (2), pp. 322–353.
T. M. Dunster (1995)Uniform asymptotic expansions for oblate spheroidal functions II: Negative separation parameter .
Proc. Roy. Soc. Edinburgh Sect. A125 (4), pp. 719–737.
T. M. Dunster (1996a)Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function.
Proc. Roy. Soc. London Ser. A452, pp. 1331–1349.
T. M. Dunster (1996b)Asymptotics of the generalized exponential integral, and error bounds in the uniform asymptotic smoothing of its Stokes discontinuities.
Proc. Roy. Soc. London Ser. A452, pp. 1351–1367.
T. M. Dunster (1996c)Error bounds for exponentially improved asymptotic solutions of ordinary differential equations having irregular singularities of rank one.
Methods Appl. Anal.3 (1), pp. 109–134.
T. M. Dunster (1997)Error analysis in a uniform asymptotic expansion for the generalised exponential integral.
J. Comput. Appl. Math.80 (1), pp. 127–161.
T. M. Dunster (1999)Asymptotic approximations for the Jacobi and ultraspherical polynomials, and related functions.
Methods Appl. Anal.6 (3), pp. 21–56.
T. M. Dunster (2001a)Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions.
Stud. Appl. Math.107 (3), pp. 293–323.
T. M. Dunster (2001c)Uniform asymptotic expansions for the reverse generalized Bessel polynomials, and related functions.
SIAM J. Math. Anal.32 (5), pp. 987–1013.
T. M. Dunster (2003b)Uniform asymptotic expansions for associated Legendre functions of large order.
Proc. Roy. Soc. Edinburgh Sect. A133 (4), pp. 807–827.
T. M. Dunster (2004)Convergent expansions for solutions of linear ordinary differential equations having a simple pole, with an application to associated Legendre functions.
Stud. Appl. Math.113 (3), pp. 245–270.
T. M. Dunster (2014)Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point.
Anal. Appl. (Singap.)12 (4), pp. 385–402.
A. J. Durán and F. A. Grünbaum (2005)A survey on orthogonal matrix polynomials satisfying second order differential equations.
J. Comput. Appl. Math.178 (1-2), pp. 169–190.
L. Durand (1975)Nicholson-type Integrals for Products of Gegenbauer Functions and Related Topics.
In Theory and Application of Special Functions (Proc. Advanced
Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis.,
1975), R. A. Askey (Ed.),
pp. 353–374. Math. Res. Center, Univ. Wisconsin, Publ. No. 35.
P. L. Duren (1991)The Legendre Relation for Elliptic Integrals.
In Paul Halmos: Celebrating 50 Years of Mathematics, J. H. Ewing and F. W. Gehring (Eds.),
pp. 305–315.
A. Dzieciol, S. Yngve, and P. O. Fröman (1999)Coulomb wave functions with complex values of the variable and the parameters.
J. Math. Phys.40 (12), pp. 6145–6166.