OFFSET
0,2
COMMENTS
REFERENCES
D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(q)^3 / f(q^3) in powers of q where f() is a Ramanujan theta function.
Expansion of 2*b(q^4) - b(q) = b(q^2)^3 / (b(q) * b(q^4)) in powers of q where b() is a cubic AGM theta function.
Expansion of eta(q^2)^9 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6))^3 in powers of q.
Euler transform of period 12 sequence [ 3, -6, 2, -3, 3, -4, 3, -3, 2, -6, 3, -2, ...].
Moebius transform is period 36 sequence [ 3, -3, -9, -3, -3, 9, 3, 3, 0, 3, -3, 9, 3, -3, 9, -3, -3, 0, 3, 3, -9, 3, -3, -9, 3, -3, 0, -3, -3, -9, 3, 3, 9, 3, -3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 972^(1/2) (t / i) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227696.
G.f.: Product_{k>0} (1 - (-x)^k)^3 / (1 - (-x)^(3*k)).
a(3*n + 2) = a(4*n + 2) = 0.
EXAMPLE
G.f. = 1 + 3*q - 6*q^3 - 3*q^4 + 6*q^7 - 6*q^9 + 6*q^12 + 6*q^13 - 3*q^16 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -q]^3 / QPochhammer[ -q^3], {q, 0, n}]
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^3, n))}
CROSSREFS
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
KEYWORD
sign
AUTHOR
Michael Somos, Sep 22 2013
STATUS
approved