[go: up one dir, main page]

login
A226535
Expansion of b(-q) in powers of q where b() is a cubic AGM theta function.
37
1, 3, 0, -6, -3, 0, 0, 6, 0, -6, 0, 0, 6, 6, 0, 0, -3, 0, 0, 6, 0, -12, 0, 0, 0, 3, 0, -6, -6, 0, 0, 6, 0, 0, 0, 0, 6, 6, 0, -12, 0, 0, 0, 6, 0, 0, 0, 0, 6, 9, 0, 0, -6, 0, 0, 0, 0, -12, 0, 0, 0, 6, 0, -12, -3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, -6, -6, 0, 0, 6, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Zagier (2009) denotes the g.f. as f(z) in Case B which is associated with F(t) the g.f. of A006077.
REFERENCES
D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.
FORMULA
Expansion of f(q)^3 / f(q^3) in powers of q where f() is a Ramanujan theta function.
Expansion of 2*b(q^4) - b(q) = b(q^2)^3 / (b(q) * b(q^4)) in powers of q where b() is a cubic AGM theta function.
Expansion of eta(q^2)^9 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6))^3 in powers of q.
Euler transform of period 12 sequence [ 3, -6, 2, -3, 3, -4, 3, -3, 2, -6, 3, -2, ...].
Moebius transform is period 36 sequence [ 3, -3, -9, -3, -3, 9, 3, 3, 0, 3, -3, 9, 3, -3, 9, -3, -3, 0, 3, 3, -9, 3, -3, -9, 3, -3, 0, -3, -3, -9, 3, 3, 9, 3, -3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 972^(1/2) (t / i) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227696.
G.f.: f(q) = F(t(q)) where F() is the g.f. of A006077 and t() is the g.f. of A227454.
G.f.: Product_{k>0} (1 - (-x)^k)^3 / (1 - (-x)^(3*k)).
a(3*n + 2) = a(4*n + 2) = 0.
a(n) = (-1)^n * A005928(n) = (-1)^(((n+1) mod 6 ) > 3) * A113062(n). A113062(n) = |a(n)|.
a(3*n) = A180318(n). a(2*n + 1) = 3 * A123530(n). a(4*n) = A005928(n).
EXAMPLE
G.f. = 1 + 3*q - 6*q^3 - 3*q^4 + 6*q^7 - 6*q^9 + 6*q^12 + 6*q^13 - 3*q^16 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -q]^3 / QPochhammer[ -q^3], {q, 0, n}]
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^3, n))}
CROSSREFS
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sequence in context: A334874 A343903 A339416 * A005928 A113062 A259659
KEYWORD
sign
AUTHOR
Michael Somos, Sep 22 2013
STATUS
approved