[go: up one dir, main page]

login
A227454
Expansion of q * (f(q^9) / f(q))^3 in powers of q where f() is a Ramanujan theta function.
35
1, -3, 9, -22, 51, -108, 221, -429, 810, -1476, 2631, -4572, 7802, -13056, 21519, -34918, 55935, -88452, 138332, -213990, 327852, -497592, 748833, -1117692, 1655719, -2434938, 3556791, -5161808, 7445631, -10677096, 15226658, -21599469, 30485268, -42817788
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Zagier (2009) denotes the g.f. as t(z) in Case B which is associated with F(t) the g.f. of A006077.
REFERENCES
D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.
FORMULA
Expansion of c(-q^3) / (-3 * b(-q)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^4) * eta(q^18)^3 / (eta(q^2)^3 * eta(q^9) * eta(q^36)))^3 in powers of q.
Euler transform of period 36 sequence [ -3, 6, -3, 3, -3, 6, -3, 3, 0, 6, -3, 3, -3, 6, -3, 3, -3, 0, -3, 3, -3, 6, -3, 3, -3, 6, 0, 3, -3, 6, -3, 3, -3, 6, -3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/27) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227498.
G.f. t(q) satisfies f(q) = F(t(q)) where F() is the g.f. of A006077 and f() is the g.f. of A226535
G.f.: x * (Product_{k>0} (1 - (-x)^(9*k)) / (1 - (-x)^k))^3.
a(n) = -(-1)^n * A121589(n).
EXAMPLE
G.f. = q - 3*q^2 + 9*q^3 - 22*q^4 + 51*q^5 - 108*q^6 + 221*q^7 - 429*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ -q^9] / QPochhammer[ -q])^3, {q, 0, n}]
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^18 + A)^3 / (eta(x^2 + A)^3 * eta(x^9 + A) * eta(x^36 + A)))^3, n))}
CROSSREFS
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sequence in context: A365665 A160526 A121589 * A000716 A001628 A099166
KEYWORD
sign
AUTHOR
Michael Somos, Sep 22 2013
STATUS
approved