OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x^6) * b(x) in powers of x where phi() is a Ramanujan theta function and b() is a cubic AGM theta function.
Expansion of q^(-3/4) * eta(q)^3 * eta(q^12)^2 / (eta(q^3) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ -3, -3, -2, -3, -3, -1, -3, -3, -2, -3, -3, -3, ...].
EXAMPLE
G.f. = 1 - 3*x + 6*x^3 - 3*x^4 + x^6 - 9*x^7 + 12*x^9 - 3*x^10 + 6*x^12 + ...
G.f. = q^3 - 3*q^7 + 6*q^15 - 3*q^19 + q^27 - 9*q^31 + 12*q^39 - 3*q^43 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^6] QPochhammer[ x]^3 / QPochhammer[ x^3], {x, 0, n}];
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(-3/4)* eta[q]^3*eta[q^12]^2/(eta[q^3]*eta[q^6]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 17 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^12 + A)^2 / (eta(x^3 + A) * eta(x^6 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 02 2015
STATUS
approved