[go: up one dir, main page]

login
A014197
Number of numbers m with Euler phi(m) = n.
65
2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, 0, 0, 0, 0, 0, 2, 0, 10, 0, 2, 0, 6, 0, 0, 0, 6, 0, 0, 0, 3
OFFSET
1,1
COMMENTS
Carmichael conjectured that there are no 1's in this sequence. - Jud McCranie, Oct 10 2000
Number of cyclotomic polynomials of degree n. - T. D. Noe, Aug 15 2003
Let v == 0 (mod 24), w = v + 24, and v < k < q < w, where k and q are integer. It seems that, for most values of v, there is no b such that b = a(k) + a(q) and b > a(v) + a(w). The first case where b > a(v) + a(w) occurs at v = 888: b = a(896) + a(900) = 15 + 4, b > a(888) + a(912), or 19 > 8 + 7. The first case where v < n < w and a(n) > a(v) + a(w) occurs at v = 2232: a(2240) > a(2232) + a(2256), or 27 > 7 + 8. - Sergey Pavlov, Feb 05 2017
One elementary result relating to phi(m) is that if m is odd, then phi(m)=phi(2m) because 1 and 2 both have phi value 1 and phi is multiplicative. - Roderick MacPhee, Jun 03 2017
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, section B39.
J. Roberts, Lure of The Integers, entry 32, page 182.
LINKS
Max A. Alekseyev, Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions. Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.2.
R. D. Carmichael, On Euler’s phi-function, Bull. Amer. Math. Soc. 13 (1907), 241-243.
R. D. Carmichael, Note on Euler’s phi-function, Bull. Amer. Math. Soc. 28 (1922), 109-110.
K. Ford, The number of solutions of phi(x)=m, arXiv:math/9907204 [math.NT], 1999.
S. Sivasankaranarayana Pillai, On some functions connected with phi(n), Bull. Amer. Math. Soc. 35 (1929), 832-836.
Eric Weisstein's World of Mathematics, Totient Function
Eric Weisstein's World of Mathematics, Totient Valence Function
FORMULA
Dirichlet g.f.: Sum_{n>=1} a(n)*n^-s = zeta(s)*Product_(1+1/(p-1)^s-1/p^s). - Benoit Cloitre, Apr 12 2003
Lim_{n->infinity} (1/n) * Sum_{k=1..n} a(k) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707036... (see A082695). - Benoit Cloitre, Apr 12 2003
From Christopher J. Smyth, Jan 08 2017: (Start)
Euler transform = Product_{n>=1} (1-x^n)^(-a(n)) = g.f. of A120963.
Product_{n>=1} (1+x^n)^a(n)
= Product_{n>=1} ((1-x^(2n))/(1-x^n))^a(n)
= Product_{n>=1} (1-x^n)^(-A280712(n))
= Euler transform of A280712 = g.f. of A280611.
(End)
a(A000010(n)) = A066412(n). - Antti Karttunen, Jul 18 2017
From Antti Karttunen, Dec 04 2018: (Start)
a(A000079(n)) = A058321(n).
a(A000142(n)) = A055506(n).
a(A017545(n)) = A063667(n).
a(n) = Sum_{d|n} A008683(n/d)*A070633(d).
a(n) = A056239(A322310(n)).
(End)
MAPLE
with(numtheory): A014197:=n-> nops(invphi(n)): seq(A014197(n), n=1..200);
MATHEMATICA
a[1] = 2; a[m_?OddQ] = 0; a[m_] := Module[{p, nmax, n, k}, p = Select[ Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; k = 0; While[n <= nmax, If[EulerPhi[n] == m, k++]; n++]; k]; Array[a, 92] (* Jean-François Alcover, Dec 09 2011, updated Apr 25 2016 *)
With[{nn = 116}, Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]] (* Michael De Vlieger, Jul 19 2017 *)
PROG
(PARI) A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ M. F. Hasler, Oct 05 2009
(Python)
from sympy import totient, divisors, isprime, prod
def a(m):
if m == 1: return 2
if m % 2: return 0
X = (x + 1 for x in divisors(m))
nmax=m*prod(i/(i - 1) for i in X if isprime(i))
n=m
k=0
while n<=nmax:
if totient(n)==m:k+=1
n+=1
return k
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 18 2017, after Mathematica code
(Magma) [#EulerPhiInverse(n): n in [1..100]]; // Marius A. Burtea, Sep 08 2019
(GAP)
a := function(n)
local S, T, R, max, i, k, r;
S:=[];
for i in DivisorsInt(n)+1 do
if IsPrime(i)=true then
S:=Concatenation(S, [i]);
fi;
od;
T:=[];
for k in [1..Size(S)] do
T:=Concatenation(T, [S[k]/(S[k]-1)]);
od;
max := n*Product(T);
R:=[];
for r in [1..Int(max)] do
if Phi(r)=n then
R:=Concatenation(R, [r]);
fi;
od;
return Size(R);
end; # Miles Englezou, Oct 22 2024
CROSSREFS
Cf. A000010, A002202, A032446 (bisection), A049283, A051894, A055506, A057635, A057826, A058277 (nonzero terms), A058341, A063439, A066412, A070243 (partial sums), A070633, A071386 (positions of odd terms), A071387, A071388 (positions of primes), A071389 (where prime(n) occurs for the first time), A082695, A097942 (positions of records), A097946, A120963, A134269, A219930, A280611, A280709, A280712, A296655 (positions of positive even terms), A305353, A305656, A319048, A322019.
For records see A131934.
Column 1 of array A320000.
Sequence in context: A164917 A166238 A293275 * A341825 A181308 A292246
KEYWORD
nonn,nice,easy,changed
STATUS
approved